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Abstract
Designing a digital integrated circuit requires many register
transfer level (RTL) simulations for design, debugging, and
especially verification. To cope with the slow speed of RTL
simulation, industry frequently uses private server farms to
run many simulations in parallel. Surprisingly, the impli-
cations of parallel runs of different RTL simulations have
not been extensively explored. Moreover, in modern digital
hardware, there is a growing trend to replicate components
to scale out. However, the potential for circuit deduplication
has been mostly overlooked.

In this work, we pinpoint the shared last-level cache as
the primary bottleneck impacting the throughput of RTL
simulation. To address this issue, we propose a coarse-grained
circuit deduplication strategy integrated into an RTL simu-
lator. Our method involves identifying multiple instances of
a single module within a digital circuit and creating shared
code that can be applied to all of these instances. Our ap-
proach reduces the cache footprint by increasing code reuse,
which consequently benefits processor components such as
caches and branch predictors. Our experiments demonstrate
that deduplication can bring up to 1.95× speedup in a single
simulation, and achieve up to 2.09× overall RTL simulation
throughput.

CCSConcepts: •Hardware→Hardware description lan-
guages and compilation.
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1 Introduction
The rapidly growing size and complexity of ASIC designs
is causing the verification effort to grow at an exponential
pace [18]. To ensure quality and timely delivery, chip com-
panies generallymaintain private compute infrastructure [14,
15] but naturally cannot scale this out as quickly as today’s
verification tasks require. Despite the growing need for high
throughput RTL simulation, the implication of batch execu-
tion of different RTL simulators is underexplored.
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Figure 1. Throughput scaling limits for independent RTL
simulations running in parallel on a large (LargeBoom-6C)
and a small (Rocket-1C) design.Throughput normalized to a
single commercial simulator. Evaluation details in Section 6.

Despite their independence, in practice, a batch of simula-
tions does not often demonstrate linear parallel scaling (Fig-
ure 1). Our motivating experiment considers leading RTL
simulators, both commercial and open-source (details in Sec-
tion 6). For a large design (LargeBoom-6C), 48 physical cores
executing 48 independent simulations, both simulators achieve
around 12× throughput increase. When more simulations
execute in parallel but the overall throughput plateaus, that
implies each simulation is taking longer.The simulation slow-
down is due to contention for shared resources (last-level
cache and off-chip memory bandwidth).
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When considering a smaller design under the same con-
ditions (Rocket-1C), we observe Verilator scales much bet-
ter than the commercial simulator. With the smaller design,
Verilator is able to keep much of it in cache, and thus it only
needs a small fraction of the system’s memory bandwidth.
This motivating experiment demonstrates the potential of
shrinking the cache footprint of simulation to greatly in-
crease scalability.

The replication in modern hardware designs provides a
great opportunity to reduce the cache footprint of simula-
tion. Modern designs are rarely composed of unique single-
ton modules. Parallelism is frequently exploited, whether it
be for multiple tiles, cores, vector lanes, etc. Contemporary
ASIC projects extensively leverage existing building blocks
verified by third-party companies [10], which can also result
in replication. This practice not only alleviates the verifica-
tion burden and expedites product development, but it also
opens the door to strategic optimization.

These replicated components can be deduplicated such
that the simulator reuses infrastructure for all repeated in-
stances. Each instance will have its own data, but they can
share the code that represents the instances, which is typi-
cally muchmore problematic than the data. Successful dedu-
plication relieves the high pressure placed on the last-level
cache and in turn enhances overall simulation throughput.
Increased throughput can help improve verification cover-
age, reduce time to market, and even reduce design costs.

Whilemodern hardware design extensively leverages build-
ing block reuse, applying deduplication in RTL simulation
presents unique challenges, distinct from those in software
development. There are usually dependencies between a du-
plicated component and its surrounding context such that
simply creating a single shared function for the duplicated
module will almost certainly create a scheduling deadlock.
Overcoming this deadlock by repeatedly evaluating compo-
nents introduces extra computation.Thus, the primary chal-
lenge is breaking up a deduplicated component into por-
tions that can be reused while being efficiently scheduled
such that each partition is evaluated at most once.

In this work, we explore the challenges for deduplication,
our solution to these challenges, and analyze when and why
it is beneficial to deduplicate for simulation. We introduce
a method to generate code for a single instance that can be
shared for multiple duplicated instances in the circuit de-
sign. By carefully scheduling the simulator’s execution, we
create frequently re-executed code regions, forming benefi-
cial hotspots. Our techniques reduce the effective cache foot-
print of RTL simulation, which greatly increases the scala-
bility of batch simulation throughput. We contribute:

• We identify the shared last-level cache as the primary
bottleneck for the throughput of multiple simultane-
ous RTL simulations, for both commercial and open
source simulators.

• We enable deduplication in RTL simulation by elimi-
nating cycles in the circuit’s partitioned graph.

• Wepropose amethod to co-schedule deduplicated com-
ponents to increase code locality which we demon-
strate improves branch prediction effectiveness.

• Deduplicated simulation can lead up to a 1.95× speedup
in a single simulation, and achieve 2.09× overall sim-
ulation throughput compared to our baseline which
does not perform deduplication. Depending on the de-
sign, deduplication reduces the graph partitioning time
by up to 5.68× compared to our baseline.

2 Background
2.1 RTL Simulation Overview
Register transfer level (RTL) simulation serves as a founda-
tional step in digital hardware design, allowing engineers
to validate the functionality and correctness of their designs
before they are translated into actual hardware. At this level,
the behavior of the digital system is described in terms of
data movement between registers and logic operations with
clock cycle-level fidelity.

There are typically two ways to simulate a design: event-
driven, in which every time a signal in the design changes, it
emits an event to everything connected to it (which, in turn,
will cause another signal to change, emitting more events,
and so on); and full-cycle which unconditionally evaluates
the new state of the entire designwithout consideringwhether
or not a signal has changed. Event-driven simulationmatches
the specification semantics of hardware description languages
such as Verilog, but it comes with a high scheduling over-
head determining which event to evaluate next. Full-cycle
simulation effectively inlines the entire design to create a
custom simulator to remove that scheduling overhead. To
first order, one can think of event-driven simulation as an
interpreter (hardware design as data), and full-cycle sim-
ulation as ahead-of-time compilation (hardware design as
code). Both simulation approaches are commonly used, how-
ever, full-cycle simulators tend to be the fastest [3, 5, 20].

Verilator is a high-performanceVerilog simulator [20] that
uses a full-cycle approach. It is commonly used in industry
and academia because of its simulation speed and that it is
free and open source. We compare against Verilator in our
evaluation due to its availability and widespread use.

ESSENT is an open-source RTL simulator whose research
contribution is exploiting low-activity factors in the design
to avoid unnecessary computation [5]. Although its opti-
mizations make it a hybrid, it is structurally full-cycle, as it
compiles the hardware design into code ahead of time. We
extend ESSENT to prototype our approach due to its small
modular codebase that eases our development. Our dedupli-
cation work also leverages ESSENT’s acyclic partitioner.
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2.2 Importance of Cache for RTL Simulation
As a workload, RTL simulation is largely instruction bound.
Event-driven simulators execute many instructions to deter-
mine the next portions of the hardware to evaluate. Full-
cycle simulators (such as Verilator and ESSENT) have simu-
lator binaries that grow proportionally with the design size.
Although the execution is largely straight line, these large
programs still overwhelm the host processor’s frontend (caches
and branch predictors). This frontend bottleneck currently
restricts simulators to modest instruction throughput rates.
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Figure 2. All of the evaluated simulators slow down on
a large design (LargeBoom-6C) when the last-level cache
(LLC) capacity is constrained using Intel’s RDT on our
server (Table 1). For a single simulation, there is diminishing
returns when allocatingmore LLC capacity to the simulator.

To appreciate the cache’s importance, we limit the last-
level cache (LLC) available to each simulator and observe
the great increase in simulation time when there is insuffi-
cient LLC capacity (Figure 2). Our observation that RTL sim-
ulation is particularly cache-hungry is consistent with prior
work [7, 22] and helps to explain the performance plateau
from our motivating parallel scaling experiment (Figure 1).
When multiple RTL simulators run on a single server, they
consume more cache than is available on the host system,
creating substantial memory bandwidth demand. As a re-
sult, with insufficient cache capacity, cores are left idle as
they wait for memory to be retrieved. Executing even more
simulations in parallel not only does not solve this problem,
it can even make it worse.

2.3 RTL Simulation in Industry
Due to substantial computational demands for electronic de-
sign automation (EDA), chip companies traditionally have
their own private computing infrastructure [12, 14, 15]. The
potential throughput penalty when running multiple RTL
simulators in parallel on a single server has become a point
of concern in industry [21], however the issue remains un-
derinvestigated. Some experiments demonstrate near-linear
scaling of RTL simulation throughput [15], while other stud-
ies conclude to the contrary that most cores should be idle
to preserve overall throughput [21].

CPU vendors have long appreciated that providing a large
LLC benefits many applications, including EDA software.
For example, AMD processors with hybrid-bonded cache
(3DV-Cache) [25] greatly increase the LLC capacity per core
and bring a 66% simulation speedup in some cases [17]. How-
ever, our evaluation demonstrates that RTL simulation is ex-
tremely cache-hungry, to the extent that the 3D V-Cache
only partially alleviates the cache stress (Figure 10).

2.4 Existing Deduplication in RTL Simulators
Current RTL simulators offer limited deduplication support.
Recent academic simulators [5, 22, 27] lack deduplication ca-
pabilities. In contrast, Verilator [20], a widely-used open-
source simulator, implements deduplication for small Sys-
temVerilog statements. However, our evaluation reveals that
the full potential of deduplication remains significantly un-
tapped (Section 6). We cannot be sure about how the com-
mercial simulator is exactly implemented, but our analysis
suggests either deduplication is not performed or at least is
ineffective.

2.5 Graph Representation & Partitioning
A digital circuit can be represented as a directed graph, with
gates and registers being the nodes, and wires as the edges.
Most simulators leverage this graph representation as a use-
ful abstraction for developing infrastructure such as an in-
ternal intermediate representation (IR). A nice attribute of
hardware is that the dataflow is completely known stati-
cally, which is significantly simpler than the case of arbi-
trary software.

Cycle-accurate RTL simulators naturally simulate cycles
in order, one-at-a-time. Thus, much of the engineering ef-
fort focuses on speeding up the evaluation of a single cy-
cle. In that cycle, new values emerge from registers, memo-
ries, and external inputs, flow through logic elements, and
are stored into registers, memories, and external outputs for
the next cycle. To perform this evaluation efficiently, sim-
ulators aspire to evaluate each element at most once per
simulated cycle. Evaluating elements in a breadth-first man-
ner (levelized) solves this problem [23, 24], but it eliminates
potentially beneficial producer-consumer temporal locality
across levels. Full-cycle simulators can generate an efficient
schedule statically with an algorithm such as topological
sort, but that requires the design graph to be acyclic. Fortu-
nately, most hardware designs are acyclic or nearly acyclic.
A nearly acyclic design can be made acyclic by grouping
strongly-connected components into supernodes.

RTL simulators, particularly full-cycle simulators, frequently
partition the design. Breaking up the circuit into smaller
subgraphs allows for modest sized partitions which can ben-
efit much of the tool flow. For example, when translating the
design into code to be compiled, reducing the size of func-
tions can greatly speed up compilation [20]. Alternatively,
well-chosen partitions can ease memoization optimizations
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to exploit low-activity factors [5]. Partitions can even be
used to statically allocate work to threads for multicore par-
allelization [22]. Partitioning a hardware design graph can
often be complicated by acyclic constraints. An acyclic par-
titioning allows for efficient simulation in which each parti-
tion is evaluated at most once per simulated cycle.

3 Motivation & Challenges
3.1 Motivation: Deduplicate for Code Reuse
In the realm of modern ASIC development, the efficiency
of RTL simulation throughput is profoundly influenced by
the available Last-Level Cache (LLC) size. Naturally, reduc-
ing the code footprint stands out as a pivotal strategy to en-
hance overall simulation throughput. By generating reusable
code once and executing it multiple times, a remarkable re-
duction in the simulator’s code footprint can be achieved.
This reduction, in turn, leads to a substantial enhancement
in throughput (Figure 3).
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(a)Design partitioned without dedup (no partition reuse)

P2’

P1’

P0’P0

P1

P2

P3

P8

P7

Core 0 Core 1

(b) Design partitioned with dedup. Partitions 𝑃0 and 𝑃0′,
𝑃1 and 𝑃1′, 𝑃2 and 𝑃2′ are identical and can be reused.

Figure 3. Partitioning an example SoC with two identical
instances (core 0 and core 1, in doubled line). Without dedu-
plication (Figure 3a), arbitrary partitions can cross instance
boundaries and none of the code is reused . With our dedu-
plication method (Figure 3b), partitions within replicated
modules are identical so the code can be reused (same color
partitions).

To capitalize on performance and throughput gains, it is
essential to focus on deduplicating a significant portion of
the input circuit. To fulfill this objective, we adopt a coarse-
grained approach to deduplication. This method involves
identifying multiple instances of the same module and max-
imizing the reuse of partitions wherever feasible. By con-
centrating on this coarse-grained level of deduplication, we
aim to optimize performance and enhance overall simula-
tion throughput effectively.

To successfully implement deduplication in existing RTL
simulators and achieve favorable outcomes, we have identi-
fied the following key challenges:

3.2 Challenge 1: Avoiding Potential Cycles
In order to enjoy the code reuse benefits of deduplication,
that piece of generated code must be reusable in multiple
instances. Although a replicated module and its repeated in-
stances can be readily identified from the module hierarchy,
the module boundaries are typically ill-suited for code reuse.
Modules typically have bidirectional connections, so mod-
ules directly translated into partitions will introduce cycles.

Additionally, different instances of the same module may
have different connectivities in their surrounding contexts.
A partitioning of the module may be acyclic in one context,
but not another. Figure 4 provides an example, while a le-
gal, acyclic partitioning can be easily applied to one instance
(Figure 4a), that partitioning applied to a different instance
introduces a cycle due to an additional external connection
(Figure 4b).

Cycles in the partitioning graph pose a significant chal-
lenge in RTL simulation, as they can lead to scheduling dead-
locks. A scheduling deadlock can be broken by repeatedly
evaluating components until a steady state is achieved. How-
ever, this method to break a deadlock leads to substantial
inefficiency due to executing extra instructions from eval-
uating some components multiple times. For this reason,
a novel duplication-aware partitioning strategy is needed.
This approach must proactively prevent the formation of cy-
cles, or promptly resolve them if they emerge.

3.3 Challenge 2: Performance Degradation Due to
Indirect Memory Accesses

Deduplication, if successful, will increase instruction through-
put through code reuse. However, refactoring the generated
code to support reuse will inevitably increase the number
of instructions executed. This is especially true for signals
at the boundary of the reused code.

In RTL simulators without deduplication, the locations of
signals read and written can be “hardcoded” per partition, a
technique adopted in prior research [5, 20]. Providing this
information statically during compilation enables extensive
optimizations by the compiler, including even obviating the
need to use memory for some signals.

Regrettably, deduplication disrupts this optimization op-
portunity. It necessitates memory indirection for every sig-
nal into or out of the deduplicated partition. Consequently,
thememory addresses are no longer readily available for the
compiler, preventing certain optimizations which sacrifice
some performance.

Indirect memory accesses can impose additional burdens.
While modern processors are superscalar, they must still
processmoremicro-ops to handle indirect accesses than they
would have to for direct accesses. Additionally, the compiler
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P3 P0

P2 P1

(a) A legal acyclic partition-
ing

Instance A’

cycle

P3’ P0’

P2’ P1’

(b) Change of context intro-
duces a cycle

Figure 4. Reusing a partitioning in another instance may
lead to cycles in the graph due to differing graph contexts. In
this example, when the acyclic partitioning from instance A
is directly applied to instance A’, different paths within the
partitioning are connected by an external edge. Although
the circuit graph itself remains acyclic, this newly intro-
duced external edge creates a cycle involving partition P3.

is forced to emit more instructions for a given block due to
optimizations prevented by the indirection.These additional
instructions eat into scarce instruction cache capacity.

We attribute this degradation to the overhead of indirect
accesses, and we refer to it as the “dedup tax”. In summary,
executing more instructions and larger code footprints can
undermine the benefits deduplication can provide. Thus, a
sufficient portion of the design must be able to be dedupli-
cated to overcome this overhead.

3.4 Challenge 3: Data Layout
Deduplicationmandates indirect accesses to instance-specific
data structures, thereby imposing new constraints on the
data layout. For example, reused code must be able to ac-
cept inputs from all of its instances as well as produce out-
puts that the surrounding context can use. Thus, the code
surrounding the reused code must adjust its data layout to
accommodate the input or output layout expected by the
reused code.

3.5 Opportunity: Code Locality
In RTL simulation without deduplication support, code will
be generated for every partition; identical hardware instances
within the circuit design will result in redundant, mostly
repetitive code for each one. This redundancy leads to poor
resource utilization, as the system will be limited by the
speed of fetching the code for each partition. However, with
deduplication, the simulator can achieve mostly identical
partitioning for these instances. This facilitates code reuse
for identical partitions, significantly enhancing efficiency,
as depicted in Figure 5.

Furthermore, this code reuse presents a novel optimiza-
tion opportunity in partition scheduling. Scheduling dupli-
cated partitions and their counterparts in other instances
(as exemplified by partitions 𝑃0 and 𝑃0′, 𝑃1 and 𝑃1′, 𝑃2 and
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Figure 5. By emitting reusable code for identical partitions,
deduplication substantially decreases the number of unique
partitions. Additionally, locality-aware scheduling signifi-
cantly reduces the number of partitions transferred through
the memory hierarchy by enhancing temporal locality.

𝑃2′ in Figure 3 and Figure 5) can significantly enhance tem-
poral code locality to help compensate for the performance
loss caused by indirect accesses (Challenge 2 in Section 3.3).

However, this promising scheduling strategy is not uni-
versally applicable for every deduplicated partition because
there are inherent data dependencies thatmust be preserved.
Consequently, the scheduler must minimize the scheduling
distance between reused partitions while ensuring correct
scheduling order to maximize temporal locality.

4 Partitioning for Deduplication
The core challenge to deduplication is partitioning the de-
sign such that the deduplicated code can be reused, while
also keeping the graph of partitions acyclic (Challenge 1 in
Section 3.2). We propose a pragmatic partitioning method
robust to the potential cycles introduced by deduplication
that is sufficiently fast to be practical. In summary, it sacri-
fices some of the periphery around the deduplicated module
instances to ease maintaining the acyclic constraint.

First, the tool flow must first identify duplicate modules
to deduplicate. Duplicate instances can be readily identified
from the module hierarchy by examining modules that are
instantiatedmultiple times.When consideringwhich repeated
module to deduplicate, there are several viable approaches
(Figure 6). In this work, we focus on deduplicating a single
module and its instances (Figure 6a), specifically choosing
the module that offers the maximum benefit (calculated as
the product of the number of module instances and the mod-
ule’s size). Extending our methodology to handle multiple
sets or even nesting could further increase the benefit of
deduplication, but our simplification allows us to focus on
the key factors.

4.1 Our Adaptive Partitioning Approach
Our partitioningmethod opts for a stepwise strategy instead
of attempting to create a universal acyclic partitioning ap-
plicable to all instances slated for deduplication right from
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Deduplicated 
Instances

(b) Dedup multiple independent modules
Small Cores

Big Core Big Core
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Deduplicated 
Instances

(c) Nested deduplication

Figure 6. Potential approaches of circuit deduplication.The
simple coarse-grained approaches are the easiest to imple-
ment, but the benefit of reducing the code size even further
by deduplicating other modules as well must not be over-
looked.

the start. We initially partition a single instance and then ap-
ply this partitioning to the remaining instances. However, a
straightforward application of that partition to all instances
is likely to introduce some cycles (Challenge 1 in Section 3.2),
so we must be able to break cycles.

Unlike prior acyclic partitioning methods that address cy-
cles by relocating vertices between partitions [11], we take
a different route. We effectively eliminate these cycles by
strategically dissolving partitions (breaking certain partitions
back into vertices) and subsequently re-partitioning the graph
remnants. As a result, the central partitions for the module
are unmodified and can thus utilize reused code. The dis-
solved partitions on the periphery are modified, and thus
unable to reuse code. Our selective approach allows us to
adapt the acyclic partitioning to each instance’s context.

4.2 Efficiently Selecting Partitions to Dissolve
Dissolving partitions that cause cycles, and subsequently
re-partitioning, offers a robust solution to the cycle prob-
lem within partitioning for deduplication. In the worst-case,
in which every partition in every deduplicated instance is
dissolved, the problem reverts to the original partitioning
challenge without deduplication. In such cases, subsequent
acyclic partitioning naturally yields legal partitions. Such
a situation might occur when no module has multiple in-
stances, or when the module earmarked for deduplication
is too small to exhibit a noticeable performance difference,
making the deduplication effort unnecessary in the first place.

The computational cost of identifying cycles in the graph
is acceptable, but we can significantly reduce it. Cycles that
can potentially arise from the direct reuse of partitions across
different instances stem fromdiffering connectivities in their
external contexts (e.g. 𝑃3 and 𝑃3′ in Figure 4). Thus, any cy-
cles that arise will cross the instance boundary, as a cycle
purely internal to the instance contradicts the instance be-
ing acyclically partitioned.

To leverage our insight, we simply dissolve all instances’
partitions on the boundary. Dissolving these partitions has
minimal impact on the deduplication rate. In practical cir-
cuit designs, large modules typically contain significantly
more internal circuit than I/O signals. After dissolving all
boundary partitions, it is still theoretically possible for cy-
cles to persist, potentially encompassing internal partitions
that are now on the fringe. Any such cycles could be re-
solved by iteratively dissolving partitions in the cycle. How-
ever, in our practical experimentation, dissolving only the
boundary partitions is sufficient. Hardware designs aremostly
acyclic, and by breaking a deduplicated instance into multi-
ple partitions, there is already enough flexibility to avoid cy-
cles. The potential for cycles may also be greatly reduced by
the inherent characteristics of ESSENT’s acyclic partitioner
we use in this work which carefully coarsens partitions.

4.3 Deduplication Partitioning Method Summary

P3
P0

P2 P1

(a) Partition a single chosen in-
stance. Note partition 𝑃3 con-
tains IO signals.

P3
P0

P2 P1

(b) Dissolve boundary parti-
tions (contains IO signals) to
break cycles.

P0

P2 P1

P0’

P2’ P1’

(c) Apply partitioning scheme
to all deduplicated instances.

P0

P2 P1

P0’

P2’ P1’

P4

P5

P6

P7

P8

(d) Partition the remaining cir-
cuit graph.

Figure 7. Adaptive partitioning approach for deduplication.
Doubled line represents instance boundary, and dashed line
indicates partition boundary.

Our partitioning algorithm takes the following steps:
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1. Partition a single instance (Figure 7a). Once the
module earmarked for deduplication is selected, acycli-
cally partition a single instance of the designatedmod-
ule. This partitioning will serve as a template for all
other instances.

2. Repeatedly break partitions for every instance
(Figure 7b). For each instance, partitions causing loops
are dissolved back into vertices. To maintain an ac-
ceptable partitioning speed, we adopt a cautious yet
effective approach: initially break down all boundary
partitions and verify no cycles exist. If any cycles are
present, dissolve the partitions involved, and repeat.
However, for the practical designs we study, we have
not encountered any cycles after removing all bound-
ary partitions.

3. Apply partitioning scheme to all deduplicated in-
stances (Figure 7c).Once acyclic partitions have been
determined for each instance and ensured that no loops
exist, this partitioning scheme is uniformly applied to
all instances in the original circuit graph.

4. Partition the remaining circuit graph (Figure 7d).
Apply the acyclic partitioner to the remaining portion
of the circuit’s graph. This process yields an acyclic
partitioning in which instances of the chosen module
have mostly identical partitions that can reuse code.

4.4 Discussion of Our Method’s Benefits
Our pragmatic method is able to produce acyclic partitions
that are identical across instances (so code can be reused)
while being practically efficient. We qualitatively discuss
some key points:

• Computationally efficient - We partition one in-
stance of a repeated module and are able to efficiently
reuse a large fraction of that partitioning for the other
instances. An alternative naïve approachmight attempt
to make a single partitioning that is safe to apply to all
instances, but doing so requires traversing the large
design graph (expensive) to create a unified constraint
graph (to partition).

• Partition size is onlymildly important - Full-cycle
simulators do not strictly enforce partition size con-
straints since an imbalanced partitioning is acceptable.
Therefore, the computational cost that a general acyclic
partitioner expends to carefully relocate vertices to
balance partitions is unnecessary.

• Small reduction in deduplication coverage is tol-
erable - Deduplicating the entirety of a module is not
always essential, since eachmodule can be partitioned
intomultiple smaller partitions. Opting to not to dedu-
plicate a few of these partitions in exchange for faster
compilation (including partitioning) and robustness

to cycles is a worthwhile tradeoff. Our strategy priori-
tizes practicality and reduced compilation time while
still enjoying most of the benefits of deduplication.

5 Data Layout & Scheduling
Beyond partitioning for deduplication, there are both data
layout (Challenge 3 in Section 3.4) and scheduling consider-
ations (Section 3.5) for applying deduplication, which can
impact both correctness and performance.

5.1 Data Layout
To reuse the same code for different instances requires in-
direction for the data accesses. To ease that indirection, the
data should have the same layout, so only the base pointer
needs to change. For each deduplicated module, we employ
a single struct per instance, which internally could sup-
port multiple deduplicated partitions. Those deduplicated
partitions are designed for code reuse, and can leverage the
addressing predictability of the struct. Partitions bordering
with the deduplicated partition are modified to read or write
this struct for signals going into or out of the deduplicated
partitions. Thus, data accesses within a deduplicated parti-
tion or its boundary use a pointer, while all other accesses
are direct. Our approach avoids the need for additional copy
operations to support the transition from one-time-use code
to reused code.

5.2 Temporal Locality-Aware Scheduling
A significant benefit of deduplication is the ability to acti-
vate a fraction of the code more than once per simulated cy-
cle. This is particularly advantageous for the processor fron-
tend and caches, especially when calls to the same code are
closely spaced (Figure 5).

A correct execution order must respect the data depen-
dencies in the partition graph. An acyclic partition graph
may havemultiple legal topological orders, but unfortunately,
not all corresponding partitions can be scheduled together
due to external dependencies between them.Thus, the main
objective of our locality-aware scheduling is to efficiently
find a legal topological order while scheduling reused code
as close as possible.

Our locality-aware scheduling method:
Step 1: Consolidation: We consolidate corresponding

partitions from multiple instances into a single super parti-
tion. We handle the challenge of avoiding cyclic merges by
following the rule proposed by Herrmann et al. [11], further
enhanced by Beamer and Donofrio [5]:

Theorem5.1. Partitions A and B can be safelymerged ⇐⇒
there is no external path in either direction between them.

Step 2: Topological Sorting: We apply topological sort
on the consolidated graph to obtain a legal schedule that is
a mixture of super partitions and regular partitions.
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Step 3: Disassembly: Each super partition is disassem-
bled, releasing its constituent partitions and allowing the
individual partitions within it to be scheduled together.

6 Evaluation
6.1 Methodology
In this section, we present our evaluation of the deduplica-
tion and code generation methods implemented on top of
ESSENT [5]. As with ESSENT, we accept FIRRTL [13] as the
input language, and emit the simulator in C++. The evalua-
tion encompasses the following simulators:

• Commercial: A widely used commercial simulator,
anonymized due to licensing restrictions.

• Verilator [20]: An open-source RTL simulator em-
braced by both academia and industry [3]. Dedupli-
cation is enabled by default.

• Verilator-NoDedup: Verilator with dedup disabled.
• ESSENT [5, 6]: A high performance RTL simulator,

serving as our baseline.
• Dedup: ESSENT, enhanced with deduplication parti-

tioning and locality optimization techniques.
We additionally create two variants of our simulators to

assess the effectiveness of specific optimizations:
• PO (Partitioning Only): ESSENT using the new parti-

tioning from our deduplication method without the
corresponding code reuse (Section 4.3).

• NL (No Locality optimization): Dedup including code
reuse but excludes the locality-aware scheduling opti-
mization (Section 5.2).

We perform the evaluation on two platforms: Server and
Desktop (Table 1). Server epitomizes a typical dual-socket
server. In light of our emphasis on reducing the working
set size, we include Desktop, which is equipped with an ad-
ditional hybrid-bonded L3 cache [25], to scrutinize the per-
formance impact on machines with ample cache capacity.

Table 1. Evaluation Platforms

Field Server Desktop
CPU 2× Intel Xeon Platinum 8260 1× AMD Ryzen 5800X3D
L1 Cache 48× 32 KB L1I, 32 KB L1D 8× 32 KB L1I, 32 KB L1D
L2 Cache 48× 1MB L2 8× 512 KB L2
L3 Cache 2× shared 35.75MB L3 1× 96MB L3 (3D-VCache)
DRAM 2× 6 Ch. DDR4-2666 (250GB/s) 2 Ch. DDR4-3200 (50GB/s)
OS Debian 12, Linux kernel 6.1.0
Compiler g++ 12.3.0, -O3
Verilator Verilator 5.016, -O2, -fno-dedup for Verilator-NoDedup

We evaluate the simulators using 17 designs (Table 2) gen-
erated by the following design generators:

• Rocket-𝑛C: 𝑛 core Rocket Chip [1]. Rocket Chip is
an open-source SoC generator featuring Rocket, an in-
order RISC-V core.

• Boom-𝑛C: 𝑛 core Boom [26]. BOOM is a parameteriz-
able open-source out-of-order RISC-V core written in
the Chisel [2] hardware description language. For our
evaluation, we utilize several common Boom config-
urations, including SmallBoom (1-wide with 32 ROB
entries), LargeBoom (3-wide with 96 ROB entries), and
MegaBoom (4-wide with 128 ROB entries).

We execute the vvadd (RISC-V vector-vector addition) mi-
crobenchmark on the simulated CPU designs.

Table 2 also offers insights into both the theoretical node
reduction achievable if every node inside all duplicated in-
stances could be successfully removed (deduplicated), and
the actual node reduction accomplished by this work, which,
due to the necessity to maintain acyclic structures, dissolves
some partitions. In the context of single-core designs, our
analysis reveals that only smallmodules can be deduplicated,
resulting in only a minor reduction in nodes (up to 3.21%).
Conversely, for multi-core designs, our approach effectively
identifies and deduplicates the largest module, the multiple
processor cores.With regards to the incurred cost of dissolv-
ing boundary partitions (Section 4.2), this is deemed accept-
able, particularly when considering that components such
as interconnect and peripherals are not subjected to dedu-
plication.

Table 2. Evaluated Designs. The larger designs have more
reuse and thus enable a greater node count reduction. Based
on the size of the duplicated modules, we can calculate the
reduction we could ideally get from deduplicating those. In
reality, we cannot actually deduplicate all of those, since
then the node graph would become cyclic.

Ideal Node Real Node
Design Nodes Edges Reduction Reduction

Rocket-1C 61,974 119,538 1.04% 0.00%
Rocket-2C 90,071 175,386 29.06% 20.80%
Rocket-4C 147,181 289,422 53.34% 37.76%
Rocket-6C 207,034 407,933 63.20% 44.41%
Rocket-8C 263,035 519,681 69.65% 49.96%
SmallBoom-1C 105,441 236,919 1.01% 0.36%
SmallBoom-2C 176,949 410,098 42.06% 28.65%
SmallBoom-4C 323,881 763,727 68.94% 45.13%
SmallBoom-6C 466,501 1,109,782 79.77% 54.56%
SmallBoom-8C 615,504 1,466,036 84.64% 57.63%
LargeBoom-1C 211,087 520,192 6.44% 3.21%
LargeBoom-2C 389,204 977,664 47.33% 34.16%
LargeBoom-4C 744,807 1,892,150 74.19% 53.42%
LargeBoom-6C 1,092,878 2,793,537 84.27% 60.86%
LargeBoom-8C 1,453,992 3,716,309 88.68% 63.73%
MegaBoom-1C 312,149 789,130 4.35% 2.15%
MegaBoom-2C 590,314 1,513,832 48.29% 36.18%
MegaBoom-4C 1,146,400 2,962,724 74.60% 56.32%
MegaBoom-6C 1,688,307 4,387,733 84.43% 63.18%
MegaBoom-8C 2,256,909 5,856,867 88.42% 66.13%
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Figure 8. Relative simulation speed of a single simulation, normalized to ESSENT (red dashed line), on Server platform.
Relative speedup of Dedup is labeled numerically. Large designs with a lot of reuse benefit most from the deduplication and
locality enhancements; conversely, smaller designs or those without much reuse only see performance similar to the baseline.
Verilator fails to compile MegaBoom-8C.

6.2 Benefits for Single RTL Simulation Performance
Wefirst evaluate the performance of a single RTL simulation
running in isolation, so each simulator is provided access
to all of the L3 cache on a single socket of the server. The
results, depicted in Figure 8, reveal that in the case of single-
core designs which have limited deduplication potential (as
outlined in Table 2)—the performance difference between
the baseline (ESSENT) and Dedup is negligible.

However, as the simulated core count increases, simula-
tion performance noticeably degrades with deduplication
on all dual-core designs. The observed performance degra-
dation is a predictable consequence of the dedup tax (Chal-
lenge 2, Section 3.3). Thus, deduplication is only warranted
if there is sufficient replication in the design, to overcome
the dedup tax.

As the simulated core count increases further, Dedup sur-
passes ESSENT in performance. This trend is expected, as
increased duplication benefits Dedup by simultaneously re-
ducing the simulation’s working set size (thanks to fewer
unique instructions in the binary) and amplifying the effec-
tiveness of locality-aware scheduling. Notably, Dedup achieves
its highest performance on the MegaBoom-8C configuration,
outpacing the baseline by approximately 1.95×. Dedup yields
even higher performance gains if the degree of replication
increases (in this design, the number of processor cores in-
stantiated).

Figure 8 further illustrates that acrossmost tested designs,
PO and ESSENT exhibit comparable simulation speeds. Al-
though the partitionings produced by our new deduplica-
tion method differ from the original ESSENT partitionings,
our experiments indicate the change in partitions is not the
primary cause of Dedup’s performance advantage.

Similarly, the significance of locality-aware scheduling is
underscored by the NL variant. In the absence of this opti-
mization, the performance of the NL model exceeds that of
the baseline but demonstrates a substantial deficiency when
compared to the Dedup. It also performs worse in dual-core
scenarios due to the dedup tax.

By default, Verilator enables deduplication, automatically
processing certain SystemVerilog’s assign statements and
simple always statements, but will not attempt more com-
plex statements. In contrast, our method is capable of dedu-
plicating almost any kind of connectivity since ESSENT does
not give special treatment to any particular kind of state-
ments. As shown in Table 2, there can be a significant reduc-
tion in node count with deduplication in Dedup. This means
that the usefulness of Verilator’s deduplication is question-
able, since it will only be possible in specific circumstances.
Indeed, the performance discrepancy between Verilator
and its variant without deduplication (Verilator-NoDedup)
is negligible (Figure 8 & Figure 9).

6.3 Multiple RTL Simulation Throughput Boost
While the performance gain for an individual simulation is
noteworthy, our primary contribution extends beyond the
performance of a single simulation. In an industrial setting,
the overall simulation throughput profoundly influences ver-
ification progress and comprehensive coverage. In this sec-
tion, we assess the simulation throughput (in terms of sim-
ulated cycles per wall clock time) across the entire system.

To replicate a realistic environment closely resembling a
real EDA datacenter, we concurrently run multiple simula-
tions. In a production environment, individual simulations
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Figure 9. Simulation throughput, measured in aggregate simulation speed per machine, on Server. Larger designs (moving
down & right) do not scale as well due to cache contention. Greater amounts of replication (moving right) provide more
opportunity for deduplication to benefit. Verilator fails to compile MegaBoom-8C. Note different scales on y-axes of subplots.

are scheduled separately. To emulate this behavior, we cre-
ate multiple copies of the simulator binary, thereby prevent-
ing the sharing of code pages by the Linux kernel.

Figure 9 illustrates the measured throughput. Similar to
Figure 1, despite the independent execution of each RTL
simulator, per-server simulation throughput clearly scales
sub-linearly. The enhanced locality and reduced code foot-
print of Dedup significantly elevates per-server simulation
throughput compared to the baseline (ESSENT). As observed
in the single simulation performance (Figure 8), increasing
repetition of building blocks in the circuit (e.g. more sim-
ulated cores) correlates with more substantial throughput
benefits harnessed by Dedup. Specifically, on SmallBoom-8C,
Dedup achieves a 2.09× throughput compared to the base-
line. As discussed in Section 6.2, the advantages of Verila-
tor’s deduplication remain dubious.

Upon closer examination, the minimal throughput differ-
ence between ESSENT and PO once again indicates that the
change in partitioning has almost no impact. The signifi-
cance of our locality-aware scheduling becomes apparent
when comparing the throughput of Dedup and NL.

The throughput of most simulators has diminishing re-
turns after a certain point, indicating the existence of re-
source contention, in this case for the last-level cache (LLC).
As the system approaches this inflection point, there are
only marginal gains in throughput to be had from execut-
ing more simulations in parallel. Moreover, the significant
increase in average simulation time renders higher levels of
parallelism less attractive. For example, with the commer-
cial simulator, doubling the number of parallel simulations
from 24 to 48 only yields an additional 1.1× throughput, ac-
companied by an alarming 1.8× increase in completion time
(Table 3). The substantial increase of simulation time dimin-
ishes the value of the minor throughput benefits.

Table 3. Relative throughput of the commercial simulator,
design SmallBoom-4C. Because of LLC contention, the in-
crease in throughput is sub-linear, and the average comple-
tion time per simulation suffers greatly.

Parallel Simulations 1 8 16 24 32 40 48
Relative Throughput 1.00 5.84 8.28 10.26 11.32 11.45 11.33
Avg. Time (s) 959 1314 1856 2244 2714 3353 4065
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We further assess throughput on a platform equippedwith
additional cache, specifically, AMD’s 3D-VCache [25] (Desk-
top platform in Table 1). While this new technology pro-
vides ample LLC and exhibits close to linear scalability for
designs of moderate size, the per-server throughput is still
constrained by the LLC size on larger designs. Figure 10
shows that Dedup quickly outpaces the other simulators even
at lower numbers of parallel simulations, since the smaller
simulator binary can fit several times in the available cache,
while the other platforms are already competing for the avail-
able cache memory again.
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Figure 10. The simulation throughput generally scales bet-
ter on the cache-rich Desktop platform, but for a large de-
sign (right), performance eventually plateaus as different
simulations compete for cache resources again.

6.4 Locality-Aware Scheduling Benefits
We analyze the RTL simulators’ behavior with hardware
performance counters (collected by perf) to understand Dedup’s
superior performancewhen cache resources are constrained
(Table 4). We restrict the available Last-Level Cache (LLC)
for each simulator using Intel RDT to quantify the cache
constraint. Intel’s cache allocation is implementedwithway-
based partitioning, which can significantly increase conflict
miss rates when cache associativity is relatively low due to
partitioning. Despite this limitation, Table 4 still provides
valuable insights into the key implications of Dedup.

First, it is expected that Dedup will execute more instruc-
tions in total, despite the smaller binary size; for LargeBoom-6C
there is a 12.4% increase in instructions executed compared
to ESSENT due to indirect memory accesses. However, the
dramatical increase in Instructions Per Cycle (IPC) compen-
sates for the deduplication tax. For example, when allocated
4 ways of cache (13MB), IPC increases from 0.27 to 0.49
(+81%) comparedwith the baseline (ESSENT). Digging deeper,
being able to fit more of the executed code into the L1 in-
struction cache greatly benefits deduplication, especially con-
sidering that the locality-aware scheduling effectively re-
duces reuse distance. Unlike data cache misses, instruction
cache misses are much harder to hide with out-of-order ex-
ecution.

0.0 0.2 0.4 0.6 0.8 1.0
Relative Graph Partitioning Time

ESSENT
Dedup

a) Initial Partitioning
b) Remove Cycles

c) Apply Partitions
d) Partitioning Rest

Figure 11. Relative graph partitioning time, normalized to
ESSENT, LargeBoom-6C. Stages are described in Figure 7.
The Remove Cycles step is too fast to be visible. Partitioning
time of Dedup is only 17.6% of ESSENT (blue bar)

Unsurprisingly, limited LLC doesn’t constrain private L1
and L2 cacheMisses Per Kilo Instructions (MPKI), and larger
available LLC benefits LLC MPKI. The drastically reduced
branch MPKI is another example of how our locality-aware
scheduling reduces reuse distance and thus benefits pipeline
components. As such, Dedup leads to fewer pipeline stalls;
the performance benefits compensate for the deduplication
tax. Once again, performance counters also show that mi-
nor differences in the partitioning scheme have a minimal
impact (ESSENT compared to PO).

6.5 Deduplication Reduces Graph Partitioning Time
Partitioning the design graph consumes a significant amount
of time in ESSENT’s flow to create a simulator. Another ben-
efit of deduplication is that it reduces the graph partition-
ing time since it only needs to partition one instance and
can mostly reuse that partitioning for the other instances.
The partitioning time benefits of Dedup depend on the in-
put design. As mentioned earlier, Dedup adopts ESSENT’s
acyclic partitioner and thus should have identical partition-
ing time if the input design has no replicated modules. How-
ever, when partitioning designs with significant reuse, our
partitioning scheme achieves a promising speedup. For ex-
ample, the partitioning time of Dedup is only 17.6% of the ES-
SENT baselinewhen partitioning LargeBoom-6C (Figure 11).

6.6 Simulation Duration Impact
In industry, RTL simulations extending beyond a day are
not uncommon. However, due to the cache contention ef-
fect (Table 3), obtaining results from extended evaluations
within a reasonable timeframe proves challenging; for in-
stance, the simulations illustrated in Figure 9 require 25 days
in total. In this subsection, we execute much longer simula-
tions for a few data points to assess the impact on the overall
results.

The simulation speed of full-cycle simulators like Verila-
tor [20] is independent of the signal activity rate in that sim-
ulation. For example, the Verilator simulation of SmallBoom-6C
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Table 4. Hardware performance counter measurements on Server for LargeBoom-6C. More cache (moving right) improves
most cache metrics, but our optimizations also improve IPC and branch prediction at the expense of more instructions.

Allocated Cache 6.50MB (2 Ways) 13.00MB (4 Ways) 19.50MB (6 Ways)
ESSENT PO NL Dedup ESSENT PO NL Dedup ESSENT PO NL Dedup

Instructions 1.13 T 1.13 T 1.28 T 1.28 T 1.13 T 1.13 T 1.28 T 1.28 T 1.13 T 1.13 T 1.28 T 1.28 T
Exec Time (s) 1347.39 1369.28 1253.28 960.52 1070.03 1050.37 777.34 679.14 838.52 839.09 611.72 568.31
IPC 0.22 0.21 0.26 0.34 0.27 0.28 0.42 0.49 0.35 0.35 0.54 0.58
L1I MPKI 165.01 164.92 158.82 119.39 162.27 162.75 155.05 118.05 157.50 158.11 152.65 117.12
L1D Read MPKI 19.72 20.26 23.42 27.53 19.69 20.31 23.54 27.51 19.79 20.39 23.55 27.67
L2 MPKI 147.08 147.30 123.75 105.12 147.26 147.85 124.05 105.60 146.83 147.26 124.43 105.66
L3 MPKI 2.67 2.22 2.85 3.11 0.62 0.57 0.67 0.97 0.28 0.25 0.13 0.20
Branch MPKI 19.60 19.87 13.15 12.61 19.54 19.80 13.11 12.59 19.53 19.80 13.12 12.59
Pipeline Stall (%) 84.70 85.17 79.31 73.80 81.11 80.89 67.19 63.48 76.03 76.32 58.58 56.52

maintains an average speed of 2449.05Hz, with the simula-
tion speed deviating by no more than ±4% from the aver-
age 99.29% of the time. This indicates that each signal and
logic statement is evaluated consistently, irrespective of its
activity level, rendering shorter simulations representative
for full-cycle simulators. Conversely, for simulators that ac-
count for circuit activity, like ESSENT, simulation perfor-
mance can vary based on theworkload since that can change
the amount of activity [4].

To more accurately assess the impact of different work-
loads and simulation duration, we evaluate SmallBoom-6C
using both the original vvadd benchmark, denoted as bench-
mark A, and an extended version of vvadd, denoted as bench-
mark B. Benchmark A exhibits an average activity rate of
6.52% on ESSENT,while benchmark B ismore dynamic, with
an activity rate of 14.87%. Notably, Benchmark B is approx-
imately 11.2× longer in duration than benchmark A.

For this work, we are most concerned with evaluating
the benefit of deduplication, i.e. Dedup versus ESSENT. The
activity-sensitive simulators (ESSENT & Dedup), execute at
approximately half the simulation rate for benchmark B since
it has roughly twice the activity. However, Dedup is still sig-
nificantly faster than ESSENT, which further demonstrates
the benefit of deduplication. For a single simulation, dedu-
plication provides a 1.234× speedup on benchmark B, which
is marginally higher than on benchmark A (Figure 8). This
improvement is attributed to the fact that more active par-
titions facilitate greater code reuse. For simulation through-
put using multiple cores (Figure 12), Dedup realizes a maxi-
mum throughput increase of 2.308× over ESSENT using bench-
mark B, surpassing the 2.079× increasewe observe for bench-
mark A (Figure 9). This enhanced throughput corroborates
the hypothesis that increased reuse leads to improved per-
formance. Additionally, the evaluation results do not quali-
tatively change by running much longer simulations.
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Figure 12. Simulation throughput of SmallBoom-6C, mea-
sured in simulation speed per machine on Server platform,
varies with different benchmarks, A and B. Dedup achieves
a maximum throughput increase of 2.308× compared to
ESSENT for benchmark B. An increase in benchmark activity,
as in B, results in a decrease in throughput for ESSENT, and
similarly for Dedup, which is built upon ESSENT. Different
benchmarks have an unnoticeable impact on Verilator’s
throughput.

7 Related Work
While the burden of RTL simulation throughput in industry
data centers is significant, it has not received much atten-
tion in academia. Intel [15] reports that throughput scales
almost linearly with core count, while other research indi-
cates the existence of peak throughput [21]. Besides, Synop-
sys [17] reports that extra L3 cache can deliver up to 66%
faster performance for a single RTL simulation. Our more
systematic experiments support all these conclusions: RTL
simulation demands substantial cache, and for small designs
that do not exceed the cache size, throughput may scale lin-
early. However, for large designs, increasing the number of
parallel simulations may degrade both throughput and the
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average simulation duration due to competition for cache
capacity and memory bandwidth.

Recent research in RTL simulation has primarily focused
on parallelization techniques to enhance performance. Rep-
Cut [22] adopts a software-based approach, significantly re-
ducing inter-thread communication through its novel replication-
based partitioning algorithm, and achieves a 27.1× speedup
using 24 threads. In the realm of hardware-software co-design,
ASH [7] combines a tightly co-designed hardware architec-
ture with a specialized compiler to achieve a 32× speedup
compared to the multithreaded Verilator. Manticore [8], on
the other hand, eliminates fine-grain synchronization over-
head through a static bulk-synchronous parallel execution
model, relying solely on the compiler to manage resources
and communication, and achieves an 18.0× speedup with
an FPGA prototype relative to a single-thread Verilator. Be-
yond parallelization, Khronos [27] aims to optimize RTL sim-
ulation by fusing frequent memory accesses, achieving an
average of 2.0× speedup.

The central theme of this work is deduplication, which
can synergize with existing approaches to further enhance
RTL simulation performance. The deduplication process, by
reducing cache requirements and improving data locality,
has the potential to increase the efficiency of other RTL sim-
ulators. With modest modifications to partitioners and code
generation, deduplication could be integratedwith thesemeth-
ods, offering additional benefits in terms of performance
and throughput.

The granularity of deduplication isworth discussing. Hard-
ware decompilation [19] reads the input netlist, identifies re-
peated logic in the netlist (such as that which would be syn-
thesized from loops in the original HDL code), and rerolls
them into syntactic loops in the recovered HDL code. A
mean speedup of 6× was found in RTL simulation. The ma-
jor barrier to adopting this decompilation work into large-
scale RTL simulation is its complexity (e.g. over 20 s to reroll
a small shifter). Unlike decompilation, whichworks at a finer
granularity, our approach operates at a coarse granularity,
requiring little performance overhead and speeding up graph
partitioning time by skipping partitioning of identical in-
stances. Furthermore, our work is not in conflict with hard-
ware decompilation, as deduplication at the module level
could provide additional performance benefits when com-
bined with finer-grained decompilation internally.

Apart from academic RTL simulators, deduplication in
RTL simulation has been explored within open-source tools,
notably Verilator [20] and Arcilator [9]. However, the full
potential of deduplication has yet to be realized. These sim-
ulators have implemented deduplication on a limited scale,
targeting small circuit fragments that bypass cyclic sched-
uling challenges, which results in modest performance en-
hancements. Our evaluation (Section 6) demonstrates the

constrained benefits of such limited deduplication. In con-
trast, thiswork proposes a coarse-grained deduplication strat-
egy. We aim to deduplicate as many circuit partitions as fea-
sible, addressing and resolving the minority that could in-
troduce scheduling cycles. Deduplicating on a larger scale
can lead to significant improvements in both performance
and throughput.

RTLFlow [16] is a recent work primarily focusing on im-
proving simulation throughput rather than single simula-
tion performance, by exploiting stimuli-level parallelism on
a GPU. While it significantly benefits simulation through-
put, several drawbacks of RTLFlow limit its application. First,
RTLFlow requires over a hundred input stimuli to demon-
strate positive throughput benefits, which may not always
be available during development. Second, long-tail stragglers
will significantly undermine utilization and thus through-
put. Finally, running thousands of simulations in parallel re-
quires a considerable amount of GPUmemory, and enabling
waveform dumping could easily exceed this.

8 Conclusions
In this work, we find limited LLC capacity to be the biggest
constraint on RTL simulation throughput. To address this
limitation, we propose a coarse-grained deduplication ap-
proach for RTL simulation, aiming to enhance both single-
simulation performance aswell as per-servermulti-simulation
throughput.The prevalence of replicated components inmod-
ern System-on-Chip (SoC) designsmakes the exploitation of
such duplication highly beneficial for the design iteration
cycle.

Avoiding cycles is the primary challenge for circuit dedu-
plication. We address this issue by dissolving partitions that
may potentially cause cycles. Our experiments demonstrate
that reused module instances can be significantly dedupli-
cated, incurring onlyminor overheads. Introducing code reuse,
we further propose a locality-aware scheduling strategy to
effectively reduce reuse distance, thereby benefiting instruc-
tion caches and branch predictors. Collectively, our eval-
uation demonstrates substantial performance benefits for
single simulations and more than twofold increase in per-
server throughput on designs with high duplication.
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A Artifact Appendix
A.1 Abstract
This package contains the source code of ESSENT, our simu-
lator, and Verilator 5.016, along with the necessary software
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dependencies to reproduce key results (Figure 2, Figure 8,
and Figure 9) of this paper. Figures 1, 10, and 12 are special
cases of Figure 9, and thus scripts are not provided.

Due to platform variance (different performance counters
on different platforms), we are unable to provide a portable
script for collecting data using perf.

To quickly verify and reproduce the results in the paper,
this package allows users to selectively compile and run sim-
ulators. Users can reproduce key results in a few days. Fully
reproducing every data point in this paper may take around
one month. Please be careful when choosing simulators to
test! We recommend testing simulator_rocket21-1c and
simulator_boom21-6large, which complete in a few days
(depending on the number of cores).

For more information, please read README.md.

A.2 Artifact check-list (meta-information)
• Run-time environment: Linux
• Hardware: Multi-core x86 platform. If you wish to repro-

duce Figure 2, a CPU that supports Intel Cache Allocation
Technology/Intel Resource Director Technology/AMD Plat-
form Quality of Service Extension, as well as root access, is
needed.

• Howmuchdisk space required (approximately)?: 100GB
• How much time is needed to prepare workflow (ap-

proximately)?: A few hours to days, depending on config-
uration.

• How much time is needed to complete experiments
(approximately)?: A few days to a month, depending on
configuration.

• Publicly available?: Yes, artifact available on Zenodo1 or
Docket Hub2. Source code available on GitHub3

• Code licenses (if publicly available)?: BSD
• Data licenses (if publicly available)?: BSD
• Archived (provide DOI)?: Yes, 10.5281/zenodo.11508626

A.2.1 How to access. Theartifact can be downloaded from
Zenodo]. We also have a docker image with the environ-
ment properly set up (Click here for docker image).

A.2.2 Hardware dependencies. A multi-core x86 plat-
form. If youwish to reproduce Figure 2, a CPU that supports
Intel Cache Allocation Technology/Intel Resource Director
Technology/AMD PlatformQuality of Service Extension, as
well as root access, is needed.

A.2.3 Software dependencies. See README.md

A.3 Installation
See README.md

A.4 Experiment workflow
See README.md
1Zenodo: https://doi.org/10.5281/zenodo.11508626
2Docker Hub: https://hub.docker.com/repository/docker/haooozi/dedup-
ae/general
3GitHub: https://github.com/ucsc-vama/essent/tree/dedup

A.5 Evaluation and expected results
We recommend selecting a few designs instead of all designs
to speed up the evaluation process, as measuring through-
put for all simulators may take one month. Our plotting
script will plot only available data.

The reproduced Figure 8 should demonstrate the trend
that designs with more cores benefit more from deduplica-
tion, withminor differences between Verilator and Verilator
- NoDedup.

The reproduced Figure 9 should show the throughput ben-
efits of Dedup over the baseline ESSENT on designs with
more than 2 cores.

A.6 Experiment customization
See README.md
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