
1

Scala Defined Hardware Generators for Chisel
Martin Schoeberl∗, Hans Jakob Damsgaard†, Luca Pezzarossa∗, Oliver Keszocze∗,

Erling Rennemo Jellum‡, Scott Beamer§

∗Technical University of Denmark, Denmark †Tampere University, Finland ‡Norwegian University of Science and
Technology, Norway §University of California, Santa Cruz, USA Emails: {masca, lpez, olike}@dtu.dk,

hans.damsgaard@tuni.fi, erling.r.jellum@ntnu.no, sbeamer@ucsc.edu

Abstract—We describe digital hardware designs in hardware
description languages such as VHDL and SystemVerilog. Both
languages were developed in the 1980s and, although regularly
updated, are still in the style of their time. They lack the
constructs to write more configurable generators than just the
number of bits for an operation. Based on Scala, Chisel is a
hardware construction language that helps to write hardware
generators.

Hardware generators are not a new idea. Scripting languages,
such as Perl and TCL, are often used to generate VHDL or
Verilog code from other sources of system description. However,
mixing two languages and embedding VHDL or Verilog strings
in generator code is not scalable.

As Chisel is embedded in Scala, we can write the generators
using the same language/environment as we use to describe
the digital logic. This paper explores different examples and
patterns to describe parameterizable hardware generators. We
are confident that practices from software development can
improve the productivity of hardware designers to build and
test the next billion transistor chips.

Index Terms—hardware generators, open-source hardware,
and open-source digital design tools.

I. INTRODUCTION

The state-of-the-art digital hardware design uses hardware
description languages (HDLs). The two most used languages
are VHDL and SystemVerilog. Both languages are well-
established and have been around for about 40 years, with
VHDL being standardized by the IEEE in 1987 [1], and
SystemVerilog resulting from the merger of the Verilog lan-
guage invented in the 1980s and transferred to the IEEE
in 1995 [2] and its corresponding SystemVerilog extensions
in 2005 [3]. However, the two languages have not picked
up on developments in software languages, such as object
orientation, functional programming, or dynamic typing for
describing hardware. SystemVerilog supports object-oriented
design patterns only for simulation. Therefore, they are not
expressive enough to write hardware generators.

The current practice is to use other languages, mostly
scripting languages such as Perl or Python, to write hardware
generators [4], [5]. The approach is to read some specification
(generator parameters) and output HDL code in the target
language. That code is usually embedded as strings in the
generator scripting language. This is a brittle, error-prone
approach. The main issue is that the HDL code is represented
as strings, where no syntax checks are performed [6], [7].
This complicates the maintenance of the generators. Further-
more, upgrading to a newer version of the target language

is cumbersome. With a hardware construction language, the
expressiveness is improved, and the compiler can validate the
syntax [8], [9]. The Chisel runtime spills out the Verilog code
needed for synthesis and simulation.

Let us look at a real-world problem of one of the authors
as a concrete example of a table generation issue. Before
switching to Chisel to teach undergraduates digital design, we
used VHDL. In that course, students must display a binary
number in decimal on a 7-segment display. We can use a
table to convert a binary number into a binary-coded decimal
(BCD). For a two-digit display, that table has 100 entries.
There is a case for generating that table with a script. We
provided the students with a small Java program to generate
this table. That program has about 100 lines of code, mixing
the table generation logic with strings containing VHDL code.
The core of that generation was just six lines of code. With
Chisel, we generated the same table in four lines of code
instead of 100 lines. Furthermore, this generation code is now
part of the hardware construction; no additional script run to
generate VHDL source code is needed.

This paper proposes to use Chisel together with Scala
to write hardware generators. Writing generators instead of
concrete register-transfer level (RTL) code makes designs
reusable and reduces debugging time. This paper explores
hardware generators by providing several examples. The ex-
amples illustrate how simple generators can be. For example,
the code for a parameterizable fair arbitration circuit is around
30 lines and fits into one column of this paper.

Writing hardware generators is more like software devel-
opment than classic hardware design. We assume that future
hardware engineers will also be well-educated in classic soft-
ware development and will explore the domain of hardware
generators in ways that are not yet imaginable.

While previous papers and usage in projects have demon-
strated the use of Chisel and Scala for hardware generators,
the knowledge is still fragmented across project source codes,
case studies, tool documentation, and teaching material. This
paper aims to consolidate these ideas, enrich them with new
examples, and present them in a way that is accessible to
both researchers and educators. Our primary contribution is to
explore and demonstrate the potential of hardware generators
using Chisel and Scala and to inspire further research in this
domain.

This paper is an extension of [10]. Besides reworking all
sections and extending some, we have added the following
contributions:

2

• To bridge research and practice, we teach hardware gen-
erators as part of a course on agile hardware design. We
included a dedicated section discussing our experiences
in teaching this topic.

• One common problem of SoC design and firmware
writing is a common framework to generate all needed
artifacts. We added a subsection on a framework in Chisel
that solves this problem for hardware-software co-design.

• We added a section on how testing in the Scala/Java world
can speed up developing and debugging digital designs
written in Chisel.

This paper is organized into eleven sections. The following
section gives background on Chisel. Section III provides sim-
ple examples of hardware generators. Section IV explores how
functions in Chisel can simplify and reduce code to describe
circuits. Section V adds object-oriented programming to the
hardware description. Section VI explores how functional pro-
gramming from Scala can be used to write flexible hardware
generators. Section VII provides an example of how the func-
tional and object-oriented programming in Chisel/Scala can
help build applications. Section VIII explore some possibilities
when the test and verification code can be written in Scala
and having open-source Java libraries available. Section IX
describes how we can transfer the research knowledge of
hardware generators into education. Section X presents related
work, and Section XI concludes the paper.

II. CHISEL

Chisel is a domain-specific language embedded within
Scala, designed for the description of digital circuits [8].
Unlike traditional HDLs, such as VHDL and SystemVerilog,
which primarily describe digital circuits at the register-transfer
level, Chisel leverages the capabilities of a general-purpose
programming language. The embedding in Scala allows Chisel
to utilize powerful language features, including type parame-
terization and elements of both object-oriented and functional
programming paradigms. Consequently, Chisel enables the
creation of hardware generators, which help design com-
plex hardware systems more efficiently than using traditional
HDLs.

One of the key advantages of Chisel’s integration with Scala
is its execution mode. Chisel is a Scala library, and when a
Scala program that uses this library is executed, it generates
a digital circuit. This process introduces another step in the
compilation pipeline, transitioning from a hardware descrip-
tion to the bit-stream for an FPGA or the masks for ASIC
production. This step, known as “elaboration,” executes the
necessary operations to implement parameterizable hardware
generators by constructing a graph of hardware elements and
their interconnections.

Embedding generator code within the hardware description
simplifies the design process. A straightforward build script
is sufficient to execute the Chisel code, eliminating the need
for external scripts. This integration ensures that the hardware
description and the generator code are always in sync, reducing
the risk of incomplete or missing files. For instance, one of the
authors encountered a project where three VHDL files needed

to be generated by a Java program. The project faced several
complaints due to missing VHDL files, which prevented
synthesis. Such issues are mitigated when the generator code
is integral to the hardware description, ensuring completeness
and consistency.

Moreover, the high-level abstractions of the Chisel/Scala
combination enable designers to focus on the architectural
aspects of the hardware design rather than the low-level imple-
mentation details. This abstraction enhances productivity and
improves the maintainability and scalability of the hardware
designs. By leveraging Scala’s rich ecosystem, Chisel provides
a robust and flexible environment for digital circuit design,
making it a powerful tool for modern hardware development.

To most users, Chisel appears to be simply a language,
but it is powered by a set of cooperating tools similar to a
compiler flow. The Chisel frontend is a Scala library that is
directly utilized by a user design, which is in fact a valid Scala
program. The frontend produces FIRRTL [11], an intermediate
representation to enable the rest of the processing by the tool
flow. That FIRRTL is progressively lowered and processed
according to both the intended output (e.g. Verilog) and user-
requested transformations. CIRCT is the current hardware
intermediate representation [12], [13], and it includes FIRRTL
as a dialect, and its firtool consumes FIRRTL to produce
Verilog or SystemVerilog.

Chisel provides a productivity advantage by allowing its
users to use the power of Scala, a general-purpose program-
ming language, to programmatically construct hardware. Hard-
ware generators written in Chisel simply instantiate hardware
components and connect them together, and the programming
glue is to control what is instantiated and how they are
connected. Thus, the use of Chisel introduces no power,
performance, or area overhead compared to writing the design
directly in low-level RTL. There is no high-level synthesis, and
the overall efficiency is determined by the architecture of the
design produced by the generator. The price of Chisel’s pro-
ductivity advantage is the complexity of writing a generator,
not efficiency. Generators can be more complex to write than
direct designs because they consider multiple design variants
and the logic to choose between them. Many designers can
sidestep this challenge by using available generators without
needing to create their own generators.

III. SIMPLE EXAMPLES

To introduce Chisel, we begin by presenting some simple
examples. While they are not very advanced concerning the
hardware or the Chisel features used, they provide practical
building blocks that are practical and can save development
and debugging time.

A. Table Generation

Tables containing constant values generated at compile time
are helpful in many situations. They allow the realization of
small combinational circuits as lookup tables (LUTs) or the
description of read-only memory (ROM). Depending on the
language used, such tables can be created as initialization
functions of vectors or arrays or using switch/case statements.

3

Traditional HDLs support the declaration and initialization
of array-type constants that serve as tables. Unfortunately, the
associated syntax in VHDL is rather verbose [14, Chap. 4]
but offers many configuration options. Conversely, SystemVer-
ilog provides fewer options for advanced initialization [15,
Sec. 9.9.1]. Small experiments we carried out suggest that
some compilers cannot synthesize tables for iterative patterns
referencing previously set array elements.

Scala, and consequently Chisel, offers a very flexible table
generation. The following code shows how to generate the
binary to BCD conversion table, that was mentioned in the
introduction.

val table = Wire(Vec(100, UInt(8.W)))
for (i <- 0 until 100) {
table(i) := (((i/10)<<4) + i%10).U

}

B. Assembler

Embedded systems (embedded processors) usually come
with static code in assembly language, such as a boot program.
One approach for designing such a system is to have some
HDL code describing the hardware and initializing memory
with the static code. Additionally, a separate assembler soft-
ware generates the static code, i.e., the binary file that is read
to create the ROM.

Using Scala, integrating the whole process into a single
language is easy by writing the assembler in Scala itself.
We successfully used this approach when implementing the
two small utility processors Lipsi [16] and Leros [17]. The
assemblers that generate the ROMs for the processors in terms
of Chisel Vecs are implemented in very few lines of code.1

C. Register Address Mapping

In large-scale hardware design, a common practice involves
automatically generating memory-mapped configuration regis-
ters from a specification file, such as XML or JSON. This spec-
ification file outlines the registers’ memory-mapped addresses,
sizes, sub-fields, and access modes (read-only, read-write,
write-only). Typically, this file is created and modified using
a graphical user interface that visually represents the register
structure or is derived from a standardized IP specification
scheme like IP-XACT [18].

Scripts written in languages like Perl or Python convert this
specification into practical hardware and software components.
These scripts parse the specification file and generate the cor-
responding HDL code (VHDL or Verilog) and software header
files necessary for register definition and documentation.

This automated process offers several significant benefits. It
ensures consistency across the HDL code, software headers,
and documentation, minimizing the risk of manual coding
errors and discrepancies. Additionally, it enhances maintain-
ability, as any changes to the specification file can be quickly
propagated to all generated outputs, keeping the hardware and
software components synchronized.

1See as an example: https://github.com/schoeberl/lipsi/blob/master/src/
main/scala/lipsi/util/Assembler.scala

However, this approach often relies on custom, ad-hoc
scripts, which can introduce additional complexity in script
maintenance and scalability. The lack of a unified generation
environment can make managing and updating these scripts
challenging as the design evolves.

Chisel addresses these challenges by providing a high-
level design environment that integrates the generation process
within the design itself. The processing of specification files
can be written in Scala and executed as part of the hardware
generation. For example, we use XML parsing in Scala to
read the T-CREST [19] system’s configuration and generate
the hardware accordingly. We can also imagine using Scala’s
XML parsing to read in IP-XACT [18] specifications.

IV. FUNCTIONS

Functions can be used in Chisel to generate hardware
components during the elaboration phase. Specifically, they
can return flexible and modular hardware by encapsulat-
ing reusable logic. Unlike Chisel Modules, which are Scala
classes, functions are lightweight and avoid the overhead of a
class definition. An additional advantage is the possibility of
using functions as parameters of higher-order ones, leverag-
ing functional programming for powerful dynamic hardware
generation.

While the idea of using functions to describe reusable
hardware is not exclusive to Chisel, its implementation is
different from traditional HDLs. Both VHDL and SystemVer-
ilog also allow the use of functions for logic encapsulation.
However, their use is primarily restricted to purely combina-
tional logic [14, Chap. 4] [15, Chap. 10]. VHDL functions and
procedures resemble processes, while SystemVerilog functions
and tasks resemble always (or always comb) blocks.

In contrast, Chisel functions allow defining both combina-
tional logic and registers (sequential logic). A simple example
is the following circuit, which detects when a signal transitions
from low to high by comparing its current value with the stored
value from the previous clock cycles.

def rising(v: Bool) = v & !RegNext(v)

Listing 1 introduces a more advanced example with the
function regPipeline, which generates a pipeline of registers
to introduce a delay to a signal. This delay, in clock cycles, is
defined by the (pipeDepth) parameter, making this function
especially useful in pipelined architectures where such delays
need to be configured dynamically during elaboration. If the
specified depth is zero or negative, the function bypasses
the pipeline and directly forwards the input signal. An in-
teresting aspect showcasing the flexibility and adaptability
of this approach is that the type T of the delayed signal is
also configurable, enabling the function to pipeline complex
structures like Vec and Bundle).

The function in Listing 1 is implemented following a
traditional imperative approach, using a loop to connect each
register in the pipeline. Alternatively, Scala’s support for
functional programming offers a cleaner and more expressive
solution by replacing the loop with the higher-order function
foldLeft, as shown in the following:

https://github.com/schoeberl/lipsi/blob/master/src/main/scala/lipsi/util/Assembler.scala
https://github.com/schoeberl/lipsi/blob/master/src/main/scala/lipsi/util/Assembler.scala

4

def regPipeline[T <: Data]
(input: T, pipeDepth: Int, init: T): T = {
if (pipeDepth <= 0) {
input

} else {
val pipeReg = RegInit(

VecInit(Seq.fill(pipeDepth)(init)))
pipeReg(pipeDepth - 1) := input
for (i <- 0 until pipeDepth - 1)
pipeReg(i) := pipeReg(i + 1)

pipeReg(0)
}

}

Listing 1: A function that generates a pipeline of registers for
a generic type with specified depth and initial values.

def regPipeline[T <: Data]
(input: T, depth: Int, init: T): T = {
(0 until depth).foldLeft(input) {
case (acc, _) => RegNext(acc, init) }

}

Chisel functions are not limited to producing single outputs.
Scala tuples can be used to return multiple values. For exam-
ple, the following function describes a circuit that identifies
both the rising and falling edges of an input signal, combining
the outputs into a single tuple.
def edges(v: Bool): (Bool, Bool) = {
val delayedV = RegNext(v)
val rising = signal & !delayedV
val falling = !signal & delayedV
(rising, falling)

}

In summary, Chisel functions offer an efficient and stream-
lined way to design parameterized hardware and can be used
as an alternative to implementing small modules.

V. OBJECT-ORIENTED PROGRAMMING

Scala is built on Java and fully supports its object-oriented
programming features, including polymorphism, inheritance,
and encapsulation. These features are available when writing
flexible hardware generators in Chisel.

With abstraction, designers can focus on high-level features
rather than low-level implementation details. Inheritance from
abstract classes and traits lets us define generic hardware
interfaces later specialized by concrete implementations. For
example, a generic FIFO may be defined with an abstract class
in which different implementations (e.g., a bubble FIFO, a
memory-based FIFO, or others) may extend, as exemplified
in [20]. VHDL and SystemVerilog support reusable interfaces,
with a combination of records and views in the former [21,
Section 6.5] and the interface construct in the latter [3,
Chap. 20], but not inheritance for hardware description.

Generics is another concept that allows for writing code
that can operate on different data types, with the type being
the parameter. Scala and Chisel support generics through type
erasure in the underlying JVM.2 VHDL and SystemVerilog
have provided similar concepts since 2008 [14] and 2005 [3],

2https://en.wikipedia.org/wiki/Generics in Java

respectively. Chisel permits using generic types for general
hardware structures, including the Decoupled ready/valid in-
terface with a generic parameter for the data type it wraps. The
register pipeline and FIFO examples above rely on generics
for any data type.

Inheritance allows for the direct reuse of (elements of)
existing hardware modules when creating new ones. It is key
to Chisel as any user-defined module extends the Module base
class and inherits all its members and methods. Similarly, it is
useful when constructing variations of a hardware component
with a common interface, for example, the FIFOs above, which
may have some common logic too.3 Notably, despite their
support for shared interfaces, neither traditional HDL permits
inheritance from one module to another

Chisel modules encapsulate their internal hardware state and
logic similarly to any other Scala class, exposing only the
necessary interfaces (e.g., through its IO bundle). By default,
all val and var fields declared in a Scala class’ body are
public, meaning they are visible outside the class. This also
applies to Chisel registers and wires. However, their values
are not readable or writable from outside the module, aligning
with encapsulation principles.

VI. FUNCTIONAL PROGRAMMING

Functional programming lifts functions to be first-class
citizens of the programming language. This allows functions
to be passed as parameters to so-called higher-order functions.
A common use case for this is when operating on a collection
(Vec in Chisel) of data. As the motivating example, we
consider summing up all values in a vector. We first define the
hardware to carry out the addition via the function definition

def add(a: UInt, b: UIn): UInt = a + b

We assume that the values we want to sum are referenced by
the variable values of Chisel type Vec. We then pass the add
function/hardware to the reduceLeft higher-order function
operating on values

val sum = values.reduceLeft(add)

The function is called reduceLeft as it reduces the values
of the vector to a single value by iterating over the vector,
applying the provided binary operation (add in our case) on
the values. It begins at the left-hand side of the vector. The
generated hardware is shown in Fig. 1a.

However, the generated hardware is not ideal. Generating an
adder tree would result in hardware with a shorter combina-
tional delay. For this, Chisel offers the reduceTree function
that results in the adder tree shown in Fig. 1b.

Explicitly defining and naming a function for simple tasks
such as addition is cumbersome. Scala allows to define anony-
mous function on-the-fly using function literals:

(param1, param2, ...) => function body

So, the previous example could be written as

val sum = values.reduceLeft((a, b) => a + b)

3See: https://github.com/freechipsproject/ip-contributions/tree/master/src/
main/scala/chisel/lib/fifo

https://en.wikipedia.org/wiki/Generics_in_Java
https://github.com/freechipsproject/ip-contributions/tree/master/src/main/scala/chisel/lib/fifo
https://github.com/freechipsproject/ip-contributions/tree/master/src/main/scala/chisel/lib/fifo

5

v(0) v(1) v(2) v(3)

+
+

+

(a) Reducing from the left.

v(0) v(1) v(2) v(3)

+ +
+

(b) Reducing as a tree.

Fig. 1: Different ways to reduce a vector of values to a single
value.

instead. To reduce the boilerplate, Scala offers the wildcard
“ ” to indicate an operand. This wildcard expands f(,)

to
(param1, param2) => f(param1, param2)

allowing to further simplify the code of the example to
val sum = values.reduceLeft(_ + _)

We will use function literals throughout the rest of the paper.

A. Finding the Minima Example

Building upon the reduction functions and function literals,
we present more elaborate examples of using Chisel to im-
plement common operations: finding the minimal value in a
Vector of values.

The function literal used for doing so takes two inputs x
and y and forwards the smaller of both. We realize this by
instantiating a multiplexer via the Mux object. The following
single line of code then gives the full solution to the task.
val min = vec.reduceTree((x, y) =>
Mux(x < y, x, y))

To further increase the function of the circuit, we extend it
so that it not only selects the smallest value but also returns the
position (i.e., index) of the smallest value within the vector.
For this, we define a custom Bundle type ValWithIndex that
stores a value and its index within the vector. We then create a
new vector of ValWithIndex’es that we fill using a for loop
with the original values and their corresponding indices. The
function that we then pass to reduceTree compares the value
component v of the supplied bundle but returns a multiplexer
that passes down the whole bundle. The corresponding code
is shown in Listing 2.

The manual process of creating the IndexedVec using a
custom Bundle is cumbersome. We can use Scala’s functional
programming features to simplify the code. Listing 3 produces
hardware that is functionally equivalent to that from Listing 2.
Here, multiple functions are chained, resulting in a larger
combinational circuit.

The zipWithIndex function creates from a sequence of
values a sequence of tuples containing the original values and
their corresponding index within the original vector. The index
is a Scala integer that must be cast into a Chisel UInt. This
is done via the map function that transforms a sequence of
values by replacing each entry with the result of a function
call that received the current entry as a parameter. These two
function calls replace the explicit indexedVec and for loop
in Listing 2, simplifying the code.

Finally, the reduce function generates the multiplexer chain
to find the minimum in the generated sequence by comparing

// Parameters n and w defined by the encapsulating
class↪→

class ValWithIndex extends Bundle {
val v = UInt(w.W)
val idx = UInt(8.W)

}

val indexedVec = Wire(Vec(n, new ValWithIndex()))
for (i <- 0 until n) {
indexedVec(i).v := vec(i)
indexedVec(i).idx := i.U

}

val res = indexedVec.reduceTree((x, y) =>
Mux(x.v < y.v, x, y))

val minVal = res.v
val minIdx = res.idx

Listing 2: The code for the minimum search, including the
index (essential part only).

val resFun = vec.zipWithIndex
.map(x => (x._1, x._2.U))
.reduce((x, y) =>
(Mux(x._1 < y._1, x._1, y._1),
Mux(x._1 < y._1, x._2, y._2)))

val minVal = resFun._1
val minIdx = resFun._2

Listing 3: Using zip and tuples for the minimum search.

elements two at a time and returning a tuple of two Chisel
UInts.

The former example returns hardware with Chisel types but
uses a Scala Vector to hold intermediate results. However, a
Scala vector does not contain the reduceTree method; it is
part of Chisel’s Vec. We can substitute the Scala tuple with
a Chisel MixedVec. A MixedVec is an indexable collection
that can contain different Chisel types, a construct similar to
a Scala tuple.

Listing 4 shows how to switch between Chisel and Scala
types. With the zipWithIndex we use Chisel types MixedVec
and create a Scala collection (a Vector). We then convert the
Scala Vector into a Chisel Vec by invoking VecInit with
the Scala Vector as a parameter. Then, we can use the tree
reduction to find the minimum and the index, returned as a
Chisel MixedVec.

A more elegant solution would be to add reduceTree

val scalaVector = vec.zipWithIndex
.map(x => MixedVecInit(x._1, x._2.U))

val resFun2 = VecInit(scalaVector)
.reduceTree((x, y) =>
Mux(x(0) < y(0), x, y))

val minVal = resFun2(0)
val minIdx = resFun2(1)

Listing 4: Using a MixedVec to hold the value and index as
Chisel types.

6

class Arbiter[T <: Data]
(n: Int, private val gen: T) extends Module {
val io = IO(new Bundle {
val in = Flipped(
Vec(n, new DecoupledIO(gen)))

val out = new DecoupledIO(gen)
})
// Definition of `arbitrate` goes here
io.out <> io.in.reduceTree(
(a, b) => arbitrate(a, b))

}

Listing 5: Arbiter built from a tree of 2-to-1 arbiters, i.e., the
arbitrate function.

to the Scala standard library. Another solution would be to
add functions to the standard Scala collection using implicit
classes. This is similar to how Scala itself adds methods to
the original String class from Java.

B. Arbitration Example

We can now combine the features used in the previous
section to construct a more advanced circuit easily. For
example, we consider a circuit that arbitrates between n
components. The arbiter should use a ready/valid interface. We
can construct the corresponding hardware as a tree of 2-to-1
arbiters. The output of the arbitration circuit will be a single
ready/valid interface. We define an arbitrate function that
will be used by the reduceTree function to arbitrate between
two requests. The code is shown in Listing 5.

A simple approach to the arbitrate function would be
to build a simple priority-based arbitration, i.e., always select
the first input. The resulting circuit is a combinational circuit.
We must add registers for those signals (and the data) to
avoid a combinational path between the ready and valid
signals. The listing of this initial circuit can be found in [20,
Section 10.6.2].

This arbitration circuit prioritizes the first input. To create a
fair arbiter, we must remember which of the two inputs won
the arbitration the last time. We do so by introducing a state
register storing the previous choice. This mechanism can be
viewed as a basic form of round-robin arbitration, where the
arbiter alternates between the inputs to ensure fairness over
time. Assuming that the 2-to-1 arbiter is fair, we assume this
also results in a fair arbitration scheme on a balanced tree.

The resulting fair 2-to-1 arbitration circuit is shown in
Listing 6. We use two registers: (1) regData storing the data
to be arbitrated and (2) regState storing the current state
of the arbiter. When no data is stored in the arbiter to be
forwarded, it constantly switches between the two idle states
idleA and idleB, indicating that it will accept data from
the corresponding input port. When data has been accepted,
the arbiter switches to the corresponding full state (hasA or
hasB). When the data has successfully been delivered to the
consumer, the arbiter continues with the idle state of the other
input.

As we have only a single data register, the arbiter can only
accept and store data from one input at a time. A second data

object State extends ChiselEnum {
val idleA, idleB, hasA, hasB = Value

}

def arbitrate(a: DecoupledIO[T],
b: DecoupledIO[T]) = {

import State._
val regData = Reg(gen)
val regState = RegInit(idleA)
a.ready := regState === idleA
b.ready := regState === idleB

switch(regState) {
is (idleA) {
when (a.valid) {
regData := a.bits
regState := hasA

}.otherwise {
regState := idleB

}
}
is (idleB) {
when (b.valid) {
regData := b.bits
regState := hasB

}.otherwise {
regState := idleA

}
}
is (hasA) {
when (out.ready) {
regState := idleB

}
}
is (hasB) {
when (out.ready) {
regState := idleA

}
}

}

val out = Wire(new DecoupledIO(gen))
out.valid :=
(regState === hasA || regState === hasB)

out.bits := regData
out

}

Listing 6: A fair 2-to-1 arbitration function for the Arbiter
class.

register is required to accept two inputs in the same clock
cycle, i.e., when both inputs are ready.

VII. APPLICATIONS

In this section, we provide examples of how to use object-
oriented and functional programming from Scala to help build
applications.

A. Mealy Machine Generator

The model often used to describe sequential hardware is
that of a Mealy machine. A mealy machine holds the system’s
current state and further consists of two functions, outFun and
stateFun, that, given input to the hardware system, compute

7

class Mealy[S <: Data, I <: Data, O <: Data](
initState: S,
genIn: I,
genOut: O,
stateFun: (S, I) => S,
outFun: (S, I) => O

) extends Module {
val io = IO(new Bundle {
val in = Input(genIn)
val out = Output(genOut)

})

val state = RegInit(initState)
state := stateFun(state, io.in)
io.out := outFun(state, io.in)

}

Listing 7: A Mealy machine generator.

the system’s output and new state, respectively. For this, they
also consider the system’s current state. Figure 2 depicts this
general and abstract view of Mealy machines.

Chisel allows the definition of a generic generator for Mealy
machines that is parameterized by the internal state (type
S), the inputs (type I), and its output (type O). It needs to
be provided with the two functions outFun and stateFun.
The corresponding code (see Listing 7) is concise, fitting in
less than 20 lines, of which only three lines describe the
actual operation; the other lines are boilerplate code. As the
implementation is trivial, it is easy to understand. It should be
noted, though, that the parameters genIn and genOut do not
contain an actual value used by the machine. They are used
to specify what types should be used by the Mealy machine.
The implementation uses functions as first-class citizens and
injects them into the polymorphic Mealy module.

For example, we present a Mealy machine that detects n
consecutive 1’s in an input stream. The visualization using n
nodes is shown in Figure 3. The corresponding Chisel code is
straightforward: basically, only the two functions outFun and
stateFun have to be specified. The corresponding functions
in Listing 8 are cntOutput and cntState, respectively. The
state variable initState is filled with the value 0 whose
required bit-width is computed from the number of 1’s to
count. Another Scala feature is used: multiple parameter
lists (also known as currying). Supplying values for the first
parameter list only yields a function expecting the rest of the
parameters, e.g., cntOutput(4) is a function that expects
a UInt (the internal state) and a Bool (the input) and then
decides whether to emit a 1 (at least 4 consecutive ones have
been detected) or not. This new function is then used by the
polymorphic Mealy module. Another technical detail is that
the cntMealy function defines the initState variable within
its scope that is then used by the cntOutput and cntState
functions and, hence, by the Mealy machine. The last lines of
the cntMealy function returns an instantiated Mealy module.

B. Software-defined IO

In previous work, we used Chisel to transpile high-level
descriptions of generic coarse-grained reconfigurable array

outFun

stateFun

Computation

Memory

s

i

s’

o

Fig. 2: Abstract view of a Mealy machine entirely determined
by the functions outFun and stateFun.

v0 v1

...

vn−1 vn−2

1/0

0/0 1/0

1/0

0/0

0/0

1/0

0/0

1/1

Fig. 3: Abstract visualization of a Mealy machine detecting n
consecutive 1’s in the input.

(CGRA) architectures into Verilog code [22]. We later auto-
mated using these architectures with approximate computing
features [23]. The source language is based on XML to limit
the implementation effort needed to describe the highly regular
architectures.

Modules described in the source language do not nec-
essarily have hierarchical depths or a priori known ports,
as certain basic elements, primitives, needed for mapping
application kernels to the architectures are converted into ports
in hardware. The hardware generation flow must, therefore,
be able to build arbitrarily deep module hierarchies but also
support interfaces specified at elaboration time, as higher-level

def cntMealy(n: Int) = {
val initState = 0.U(log2Ceil(n + 1).W)

def cntOutput(n: Int)(s: UInt, i: Bool): Bool = {
Mux(i, s === n.U, false.B)

}

def cntState(n: Int)(s: UInt, i: Bool): UInt = {
Mux(i, Mux(s < n.U, s + 1.U, s), 0.U)

}

new Mealy(initState, Bool(), Bool(), cntState(n),
cntOutput(n))↪→

}

Listing 8: Code generating a Mealy machine for detecting n
consecutive 1’s.

8

class PortRecord[T <: Data](
elts: Seq[(String, T)]

) extends Record {
elts.map(_._2).foreach(requireIsChiselType(_))
val elements =

immutable.ListMap(elts.map(_.cloneType):_*)↪→

def apply(elt: String): T = elements(elt)
}

// The below is encapsulated in a Module
val _ips = mutable.HashMap.empty[String, UInt]
val _ops = mutable.HashMap.empty[String, UInt]

lazy val io = IO(new Bundle {
val ins = Input(new PortRecord[UInt](
ips.toSeq.sortBy(._1)))

val outs = Output(new PortRecord[UInt](
ops.toSeq.sortBy(._1)))

})

Listing 9: An implementation of software-defined IO.

modules may inherit and pass through ports from sub-modules.
The flow combines functional, object-oriented, and imperative
programming features to achieve this. Composite modules are
generated as follows:

1) Name the module using Chisel’s desiredName API.
2) Recursively create all sub-modules and add them to the

current module.
3) Create all ports and add them to the current module.
4) Connect current module and sub-module ports.
The flow maintains the elaboration-time IO in two

mutable.HashMap[String, UInt] fields that are converted
into Chisel Records, as shown in Listing 9. For proper
elaboration, this conversion must not be eager. Therefore, the
fields marked lazy, meaning their elaboration is delayed until
just before they are needed, and the maps are fully specified
before their reference. However, the possible inheritance of
ports from sub-modules conflicts with the execution order of
inherited constructors in Scala. This conflict is circumvented
by wrapping steps 2 through 4 above into a build method
called at the beginning of the parent class’ constructor.

To guarantee elaboration, the io field is referenced right
after the call to build. Subsequently, all ports may be ac-
cessed by their names using the PortRecord class’ apply
method. To the best of the authors’ knowledge, this strategy
was not applied outside of RocketChip’s diplomacy package
before [24]. The presented generation of IO types has been
used in a framework for the connection of dynamic generated
CGRAs [25].

C. Hardware-Software Codesign

Heterogeneous platforms, such as System-on-chip (SoC)
FPGAs that combine multiple CPU cores with an FPGA fabric
on the same die, are becoming increasingly popular. However,
designing the composition of custom accelerators and software
components remains challenging for several reasons. The SW
components typically interact with the accelerators via the
shared memory hierarchy or by instantiating control and status
registers (CSRs) in the FPGA, which can be accessed through

AXI ports. Implementing communication between accelerators
and hardware is often tedious and vendor-specific. In Chisel,
polymorphism can abstract multiple FPGA platforms behind
the same interface. Moreover, software drivers needed to
interact with the different ports of the accelerator can be code-
generated at compile time using convenient string formatting
in Scala.

This is used in Chisel projects such as FPGA shells4 and
fpga-tidbits [26]. FPGA shells are part of the Rocket Chip
project and are used to easily deploy Rocket cores onto
different FPGA boards from multiple vendors. They provide
a uniform interface to the resources of the different boards,
both on and off-chip.

While FPGA shells are mostly used for CPU emulations,
fpga-tidbits target building and deploying embedded systems
using SoC FPGAs. fpga-tidbits is a vendor-agnostic Chisel
library for rapid prototyping of HW/SW codesigns. It provides
a generic abstraction of an FPGA platform on which portable
accelerators can be built. It also includes a component library
of memories, queues, and data movers. Finally, it includes a
co-simulation environment based on Verilator, where FPGA
accelerators can be simulated with the software interacting
with them.

Listing 10 shows a simple accelerator GrayScale designed
using fpga-tidbits. The top-level IO between the accelerator
and the host CPU is defined in GrayScaleIO. The CPU writes
the input signals and includes a signal to start the accelerator,
the address and size of an RGB image, and the destination for
the grayscale image. It also includes a finished signal driven
by the accelerator to notify the CPU that the image has been
written to shared memory.

All IO signals defined in GrayScaleIO are compiled by
fpga-tidbits into CSRs, which can be written or read from
software. Depending on the target FPGA, these registers might
be read and written through an AXI port between the CPU and
the FPGA. With fpga-tidbits, such low-level details are not part
of the accelerator logic.

The pixels of the image are read from shared memory,
and fpga-tidbits provides generic shared memory ports, which
will be compiled to concrete implementations depending on
the FPGA platform. A component library is included, which
includes a StreamReader and StreamWriter, which are pa-
rameterizable DMA modules. They produce memory requests
and expose a Decoupled interface to the accelerator.

The gray filter is implemented in the GrayScaleFilter
module, which is not shown for brevity.

When compiling GrayScale from Listing 10, fpga-tidbits
will generate platform-independent C++ drivers for interact-
ing with the accelerator. This enables hardware-software to
codesign without committing to a vendor or a platform. The
C++ drivers expose an interface to read and write the CSRs,
defined in the top-level IO, and declare, read, and write to
shared memory between the CPU and the FPGA.

Eventually, the platform-independent C++ drivers must be
paired with a platform-specific driver that reads and writes to
CSRs and shared memory.

4https://github.com/chipsalliance/rocket-chip-fpga-shells

https://github.com/chipsalliance/rocket-chip-fpga-shells

9

class GrayScaleIO(p: PlatformWrapperParams) extends
GenericAcceleratorIF(1, p) {↪→

val start = Input(Bool())
val finished = Output(Bool())
val baseAddr = Input(UInt(64.W))
val byteCount = Input(UInt(32.W))
val resBaseAddr = Input(UInt(64.W))
val resByteCount = Input(UInt(32.W))

}

class GrayScale(p: PlatformWrapperParams) extends
GenericAccelerator(p) {↪→

val numMemPorts = 1
val io = IO(new ExampleGrayScaleIO(p))
io.signature := makeDefaultSignature()

val rdP = new StreamReaderParams(
streamWidth = 24, fifoElems = 8, mem =

p.toMemReqParams(),↪→

maxBeats = 1, chanID = 0, disableThrottle = true
)

val wrP = new StreamWriterParams(
streamWidth = 8, mem=p.toMemReqParams(), chanID =

0, maxBeats = 1↪→

)

val reader = Module(new StreamReader(rdP)).io
val writer = Module(new StreamWriter(wrP)).io

reader.start := io.start
reader.baseAddr := io.baseAddr
reader.byteCount := io.byteCount
reader.doInit := false.B
reader.initCount := 8.U

writer.start := io.start
writer.baseAddr := io.resBaseAddr
writer.byteCount := io.resByteCount

io.finished := writer.finished

reader.req <> io.memPort(0).memRdReq
io.memPort(0).memRdRsp <> reader.rsp
writer.req <> io.memPort(0).memWrReq
writer.wdat <> io.memPort(0).memWrDat
writer.rsp <> io.memPort(0).memWrRsp

val grayFilter = Module(new GrayScaleFilter)
grayFilter.rgbIn.valid := reader.out.valid
grayFilter.rgbIn.bits :=

reader.out.bits.asTypeOf(new Colour)↪→

reader.out.ready := grayFilter.rgbIn.ready

grayFilter.grayOut <> writer.in
}

Listing 10: A simple gray scale filter accelerator implemented
with fpga-tidbits

VIII. TESTING AND VERIFICATION

Although this paper focuses on writing hardware generators,
testing and verifying such generators is equally important.
Therefore, we briefly describe how Scala supports testing.
Writing test benches in Scala can also be more efficient than
writing them in SystemVerilog or cocotb [27].

Chisel designs can be tested with ChiselTest [28].5 Chisel-
Test is a Scala library driving the Chisel circuit, either with
an internal simulation engine or the generated Verilog via
Verilator (or other backends). Switching between simulation
backends is transparent to the testing code.

ChiselTest provides basic support for setting input ports,
advancing the clock, and reading output ports. Compared
to solutions like cocotb, ChiselTest is type-safe with Chisel
designs under test. The main feature of ChiselTest is that
it is also embedded in Scala as a Scala library. Similar to
generators, we have all the features of Scala and many Java
libraries available to write tests.

As a simple example, assume you want to test a processor
and need to preload the memory simulation with an .elf file
containing a program to execute. Without Scala, one would
probably use an objdump tool as part of the compiler and
generate binary files that can be read in Verilog. As all Java
libraries are available, we can use an ELF library in Chisel
and read the .elf file directly in the testbench into the memory
simulation.

One of the authors is interested in processor designs. A
processor can easily be tested when co-simulating a golden
model and the hardware description. For example, in the
Wildcat project [29], [30], we initially wrote a simulator of
the RISC-V instruction set in Scala. Then, we implemented
different pipelined versions in Chisel. The simulator is a
golden model, and we perform co-simulation in Scala of
standard RISC-V test cases. In those tests, we call out from
Scala tests to the compiler to generate the .elf file and then use
a Java library to read those .elf files into the simulation. We
can even leverage the Scala testing framework ScalaTest6 to
run all hardware tests.

ChiselVerify [31] is a library for verification that extends
the capabilities of ChiselTest. It adds, besides other functions,
functional coverage to ChiselTest. Functional coverage is a
metric used in hardware verification to ensure that all design
aspects have been exercised during testing. We can use or ex-
tend ChiselVerify to test designs in Chisel and other designs in
Verilog by wrapping them into a Chisel black box. This feature
enables advanced Scala features to be used to write tests and
verification code for hardware designs in SystemVerilog.

As Scala executes on the Java virtual machine and is
compatible with Java, we can use many open-source libraries
for hardware generators and testing code. With the sbt build
tool, a library can be referenced with a single line entry in
build.sbt and automatically downloaded from the Maven

5We are aware that the newer versions of Chisel, starting with version 7,
will probably not be supported by ChiselTest and a new simulation engine
is in development. However, until that development has stabilized, we will
continue to use ChiselTest. We also expect that ChiselSim will provide a
minimal compatibility layer for ChiselTest for the transition phase.

6https://www.scalatest.org/

https://www.scalatest.org/

10

server. We can use Java libraries for tasks like logging,
data processing, reference implementations, and more, which
complement the Chisel test environment.

Another example of one of the authors is testing, verifica-
tion, and performance analysis of a network-on-chip, written
in Chisel [32]. Besides writing functional tests we also imple-
mented traffic generators in Scala. We explored different buffer
schemes of the network interface with traffic generators written
in Scala. We used Scala queues that can grow to simulate an
“ideal” buffer scheme. This experiment sets the baseline for
the following experiments. Then, we substituted those queues
with concrete hardware queues written in Chisel. We can use
the same language and execution environment for testing,
simulation, and hardware design, making the swapping in
and out of software/simulation implementations with hardware
implementations seamless and efficient.

One questions might be: If we verify the Chisel code at
Chisel level do we trust that the generated Verilog code is
correct? However, with ChiselTest we can run the tests on the
generated Verilog code with Verilator.7 Furthermore, we can
even reuse the tests with Verilog code generated by synthesis
with a Chisel black box.

Debugging hardware generators can become a non-trivial
task. One key challenge is that bugs may occur either in the
hardware description itself (Chisel part) or in the generator
logic that constructs the hardware (Scala part), making it
necessary to debug across both the Scala and Chisel domains.
Fortunately, in most cases, one can start by debugging a
single instance, which allows them to focus on the hardware
description and temporarily ignore the generator logic. Once
the bug in the instance is identified, the implications and fixes
needed for the generator can be determined. However, as a
bonus we have the full power of Scala to write these testing
procedures.

Writing a design in Chisel but debugging it from its gen-
erated Verilog is a minor hindrance rather than a major issue.
One can generally focus their time rereading the Chisel rather
than the Verilog because the Chisel to Verilog flow is quite
reliable. The only time the existence of the Verilog is apparent
to most designers is when examining the waveform from the
simulation because some of the signal names are tweaked and
there are additional signals they did not declare. Those addi-
tional signals are intermediate values used by the generated
Verilog, and they can be typically ignored because debugging
their endpoints (user-defined signals) is sufficient. The naming
of signals makes it readily apparent which originated from the
user Chisel versus those that are intermediate values. Newer
versions of Chisel and especially firtool (within CIRCT) have
placed an emphasis on making the generated Verilog and its
signal names more readable. Like any language, writing the
language idiomatically can help reduce errors and improve
readability, and there are Chisel style guides [33], [34].

Here, we provided just small examples of how a modern
programming language can improve test writing and explore

7The testing of Chisel code with the Chisel level simulation is deprecated
by the newer Chisel versions.

design alternatives. We look forward to further improving
testing in Scala/Java with a project inspired by UVM.

IX. TEACHING HARDWARE GENERATORS

One of the authors has been teaching agile hardware design
since 2021 [35], and one author has planned a course on
agile hardware design that will begin in the fall of 2025.
Agile hardware design is, to a large extent, software programs
implementing hardware generators. Teaching agile hardware
design is challenging as the prerequisites are quite divergent:
hardware design, software engineering, object-oriented pro-
gramming, and functional programming. At DTU, where we
plan to start this type of course in fall 2025 for a Bachelor’s in
Computer Engineering, which combines electrical engineering
with classic computer science. However, the students do not
know functional programming.

We have created a course to teach agile hardware de-
sign methodologies using hardware generators written in
Chisel [35], and we have released all of the materials open-
source online.8 Developing hardware generators calls for a
combination of conceptual understanding and technical/prac-
tical expertise. On the design side, designers must consider
the module’s functionality, interfaces, and parameterization.
Technically, they must be proficient in both Chisel and Scala
to implement it. The most novel aspect is they must understand
the hardware construction process during the elaboration stage.
We briefly cover the methodologies we aim to teach and the
course itself.

Our course is designed around the agile methodology of
directed incremental improvement. An emphasis is placed on
doing whatever simplifications are necessary to “close the
loop” as soon as possible, i.e., get a design running through
the tool flow (the loop). Once the loop is established, it does
not take too much effort to tweak the design and rerun the
flow. The loop through the tool flow needs to be largely
automated because it will be run many times. This agile
approach contrasts with a conventional waterfall approach,
which fully completes each step (e.g., design specification,
design implementation, verification, physical design) before
moving on to the next step. By using incremental improvement
with an automated flow, there is always a design and awareness
of its current functionality, performance, power, and area. The
design’s functionality can be extended, or its physical design
can be optimized until the designer is satisfied. With this
incremental approach, their efforts can be targeted exactly
where needed. With a waterfall approach, there is a decent
amount of uncertainty, as the need for certain optimizations
may not be obvious at the initial design time since the design
has not yet gone through the tool flow.

The course’s resulting practical methodology is built around
closing the loop early. We want students to have designs that
can run through the tool flow early on. We encourage them
first to implement a functional model of the intended module
in Scala. With that, they can use it in co-simulation to make
unit tests to test the Chisel generator as it is being developed.

8https://classes.soe.ucsc.edu/cse228a/Winter24/

https://classes.soe.ucsc.edu/cse228a/Winter24/

11

To teach this incremental design approach, the assignments
frequently task students with revising prior designs. For ex-
ample, one problem from the first homework assignment tasks
students with building a generator to make a module that
evaluates a polynomial with exactly three terms with fixed
bit widths. The following assignment has them revise the
generator to take an arbitrarily sized list of coefficients, and
the corresponding module will be generated to accommodate
the corresponding number of terms. The theme of incremental
improvement is covered throughout the course. Later on, the
course focuses on design techniques to identify the simplest
starting point and a roadmap for additional functionality and
optimizations. For example, one lecture is a case study on the
design of a FIFO. The first version is a single entry and, after
five revisions, reaches a parameterized generator whose output
uses a circular buffer.

The emphasis on incremental improvement and revision
has benefits beyond the course and hardware design and
is thus an important meta-learning objective. Students may
have encountered polished code from mature open-source
projects, but they have typically only written what amounts
to a first draft for typical assignments. By seeing the process
of incremental improvement and revising a code base, they can
better appreciate how to make these larger, more sophisticated
projects.

Teaching students to develop generators also entails under-
standing the hardware construction and elaboration process.
Chisel can be used very straightforwardly, and its function-
ality and expressiveness are equivalent to structural Verilog.
Still, it brings stronger types’ benefits, as exemplified in
DinoCPU [36], [37]. A hardware generator is more flexible
and uses Scala to stitch together pieces of hardware (in Chisel),
so the run time behavior of constructing hardware before
elaboration must be appreciated. This is a tricky concept,
so we teach it in various ways. In the lecture, we have
examples where we go through the code line-by-line, and
simultaneously, with diagrams, we show how various Scala
variables exist in memory and how each line mutates that in-
memory state. In the labs and homework assignments, we
intermix problems that are pure Scala with those that are
Chisel. Regarding course content, we continuously switch
between covering Scala, Chisel, and agile methodologies while
describing increasingly powerful generators. Intermixing the
instruction of these various topics is yet another example of
the incremental approach.

X. RELATED WORK

A. Generator Languages and Tools

Hardware generators are a rapidly developing field in which
much research and engineering is being carried out. New
languages and tools are frequently proposed in the literature
and made publicly available. Like Chisel, some languages aim
to be all-purpose HDLs with a level of abstraction. Examples
of this are myHDL [38],9 using Python as the host language,
and SpinalHDL,10 which is very similar to Chisel; not only

9https://github.com/myhdl/myhdl
10https://github.com/SpinalHDL/SpinalHDL

in using the same host language Scala. Some languages target
more specific domains. For example, the DFiant HDL [39]11

also uses Scala as the host language and aims to join dataflow,
register-transfer level, and event-driven development domains.
For this, it entirely abstracts away clocks and registers.

Another example, using Rust as the host language, is the
Spade language [40].12 Spade uses functions to represent
modules. Chisel, in contrast, supports both styles of describing
a module: as a Module with input and output ports or as
a function with inputs and outputs, as we use it in this
paper. Similar to Chisel, Spade supports generics. Spade
targets pipelined designs and forces the designer to instantiate
registers explicitly.

A language raising the level of abstraction for describing
hardware even further is Clash [9].13 Clash is based on the
functional language Haskell. Within Clash, a combinational
circuit is considered a function, transforming an input x from
a given domain X to a value y in the codomain Y , i.e.,
circuit: X → Y . As Haskell is a general-purpose program-
ming language, it supports constructs that are unavailable in
hardware. Consequently, Clash forbids the use of infinite or
recursive data structures. The designer, nevertheless, can still
make use of almost all the abstractions offered by Haskell,
such as union types (e.g., Either (Signed 8) (Unsigned
16)) or the monadic programming style. The Clash compiler
can automatically derive bit representations for all valid data
types.

Sequential circuits do not immediately fit the function model
and must be modeled differently. For this, Clash introduces
a streaming type Signal dom a that is parameterized over
the clock domain dom and the domain a. Each clock cycle
produces a value of type a. Clash is restricted to synchronous
circuits only. As Mealy machines are an often used abstraction
to describe sequential circuits, Clash offers the mealy function
that transforms a function of type f :: s -> i -> (s,o)
that maps a state s and an input i into a tuple containing the
new system state and the corresponding output into the corre-
sponding hardware. This is similar to the approach discussed
in Section VII-A but comes out of the box.

The Bluespec language pursues a different approach.14

It differs from “traditional” HDLs because it uses a fun-
damentally different execution model. Instead of threads
and processes, atomic actions serve as the main building
blocks [41]. There are two language implementations, one in-
tegrated into SystemVerilog and one into Haskell. Both imple-
mentations feature construct rule (predicate); action
statements; endrule (with minor syntactic differences be-
tween the implementations) that is the major way to de-
scribe arbitrarily complicated actions that occur when the
predicate holds. These actions can very well be synchronous
and sequential. Bluespec uses object-oriented features, such
as customizable, shared interfaces and functions for hardware
generation.

11https://dfianthdl.github.io/
12https://spade-lang.org/
13http://www.clash-lang.org
14https://github.com/B-Lang-org/bsc

https://github.com/myhdl/myhdl
https://dfianthdl.github.io/
https://spade-lang.org/
http://www.clash-lang.org
https://github.com/B-Lang-org/bsc

12

The Kactus2 tool15 aims to automate the integration of
IP-XACT-defined hardware blocks. The idea is to promote
and simplify the reuse of IP cores [42], [43]. IP-XACT is
an XML-based standard for describing IP cores [18]. Kactus
has a graphical user interface that allows you to easily define
bus connections, mapping, and parameter configurations. It
generates Verilog code and all the necessary interconnections
between the IP blocks. The end-user only has to provide the
concrete implementation of the used IP blocks. On top of that,
Kactus2 comes with a verification step for the correctness of
the address mapping. This ensures that the address space of
all IP blocks is consistent.

The tool Genesis 2 [5] introduces the concept of recipes
that allows hardware designers to write programs to construct
building blocks of hardware. For this, one has to define a set
of parameters and constraints via an XML file. Genesis 2 is
written in Perl and emits Verilog based on generated and in-
terconnected hardware blocks. It further generates verification
components, directives for the physical implementation, and
files that target the software stack (e.g., header files).

B. Applications

The Rocket processor project [44], known as “The Rocket
Chip Generator,” focuses on generating and testing complete
SoCs. It includes Diplomacy and TileLink [24]. Diplomacy
addresses parameter negotiation and hardware unit integration
into a shared address space, ensuring endpoint compatibility
and optimization based on mutual knowledge. TileLink, a stan-
dard for chip-scale shared-memory interconnects, leverages
Diplomacy to adapt to various protocol requirements.

Similarly, Chipyard [45] enables developers to design com-
plete SoCs with parameterized CPU cores, buses, caches,
accelerators, and peripherals using Chisel. It employs lazy
evaluation to defer hardware graph construction until all
components are instantiated, akin to the approach described
in Section VII-B.

The reactor-chisel library16 targets reactor-oriented pro-
gramming of SoC FPGAs [46]. The reactor design can be
expressed by instantiating and connecting modules from the
reactor-chisel library. At Chisel compile-time a hardware
runtime is also synthesized which takes care of the communi-
cation between modules and enables them in a deterministic
order. reactor-chisel leverages fpga-tidbits to also
support reactor-oriented hardware-software codesign.

Chisel (or related tools) have been used in many other
places to make designing and generating parameterized hard-
ware easy. This includes RISC-V cores [47], accelerators
for quantized neural networks [48], [49], for spiking neural
networks [50], or fast Fourier transforms [51], and even very
generic networks-on-chip designs for SoCs [52].

XI. CONCLUSION

Scala provides a tasteful mix of object-oriented and func-
tional programming in a single language. Chisel uses those

15https://github.com/kactus2/kactus2dev
16https://github.com/erlingrj/reactor-chisel

features to implement an embedded domain-specific language
for hardware construction. As users of Chisel, we can extend
this combination of Scala and Chisel to write hardware gen-
erators. When Chisel is executed, it is a Scala program that
runs to spill out a hardware description that tools can use
further downstream to test and generate Verilog code. This
execution of the Scala program is where we add the generator
functionality. In this paper, we showed that with a few lines of
functional code, one can write powerful abstractions of digital
circuits. This paper showed a handful of examples of how
hardware generators can be written. We expect that future
development and research will extend these ideas to provide
powerful abstractions for different domains.

ACKNOWLEDGMENTS

Work partially supported with funding from European
Union’s Digital Europe Programme (DIGITAL) under the
European Health and Digital Executive Agency (HaDEA)
grant agreement No. 101123086 (Edu4Chip).

REFERENCES

[1] IEEE Standard VHDL Language Reference Manual, IEEE Computer
Society, 1987.

[2] IEEE Standard Hardware Description Language Based on the Verilog(R)
Hardware Description Language, IEEE Computer Society, 1995.

[3] IEEE Standard for SystemVerilog: Unified Hardware Design, Specifica-
tion and Verification Language, IEEE Computer Society, 2005.

[4] O. Shacham, O. Azizi, M. Wachs, W. Qadeer, Z. Asgar, K. Kelley,
J. P. Stevenson, S. Richardson, M. Horowitz, B. Lee et al., “Rethinking
Digital Design: Why Design Must Change,” IEEE Micro, vol. 30, no. 6,
pp. 9–24, 2010.

[5] O. Shacham, Chip Multiprocessor Generator: Automatic Generation of
Custom and Heterogeneous Compute Platforms. Stanford University,
2011.

[6] S. A. Murtza, O. Hasan, and K. Saghar, “Vertgen: An Automatic
Verilog Testbench Generator for Generic Circuits,” in 2016 International
Conference on Emerging Technologies (ICET). IEEE, 2016, pp. 1–5.

[7] S. A. Chin, N. Sakamoto, A. Rui, J. Zhao, J. H. Kim, Y. Hara-
Azumi, and J. Anderson, “CGRA-ME: A Unified Framework for CGRA
Modelling and Exploration,” in 2017 IEEE 28th international conference
on application-specific systems, architectures and processors (ASAP).
IEEE, 2017, pp. 184–189.

[8] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis,
J. Wawrzynek, and K. Asanovic, “Chisel: Constructing Hardware in a
Scala Embedded Language,” in The 49th Annual Design Automation
Conference (DAC 2012). San Francisco, CA, USA: ACM, June 2012,
pp. 1216–1225.

[9] C. Baaij, M. Kooijman, J. Kuper, A. Boeijink, and M. Gerards, “Cλash:
Structural Descriptions of Synchronous Hardware using Haskell,” in
2010 13th Euromicro Conference on Digital System Design: Architec-
tures, Methods and Tools. IEEE, 2010, pp. 714–721.

[10] M. Schoeberl, H. J. Damsgaard, L. Pezzarossa, O. Keszocze, and E. R.
Jellum, “Hardware Generators with Chisel,” in 2024 27th Euromicro
Conference on Digital System Design (DSD), 2024, pp. 168–175.

[11] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,
C. Schmidt, C. Markley, J. Lawson et al., “Reusability is firrtl ground:
Hardware construction languages, compiler frameworks, and transforma-
tions,” in 2017 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE, 2017, pp. 209–216.

[12] S. Eldridge, P. Barua, A. Chapyzhenka, A. Izraelevitz, J. Koenig,
C. Lattner, A. Lenharth, G. Leontiev, F. Schuiki, R. Sunder et al., “MLIR
as hardware compiler infrastructure,” in Workshop on Open-Source EDA
Technology (WOSET), vol. 3, 2021.

[13] “CIRCT: circuit ir compilers and tools,” https://circt.llvm.org, 2021.
[14] IEEE Standard VHDL Language Reference Manual, IEEE Computer

Society, 2009.
[15] IEEE Standard for Verilog Hardware Description Language, IEEE

Computer Society, 2006.

https://github.com/kactus2/kactus2dev
https://github.com/erlingrj/reactor-chisel
https://circt.llvm.org

13

[16] M. Schoeberl, “Lipsi: Probably the Smallest Processor in the World,” in
Architecture of Computing Systems – ARCS 2018. Springer International
Publishing, 2018, pp. 18–30.

[17] M. Schoeberl and M. Petersen, “Leros: The Return of the Accumu-
lator Machine,” in Architecture of Computing Systems - ARCS 2019 -
32nd International Conference, Proceedings, M. Schoeberl, T. Pionteck,
S. Uhrig, J. Brehm, and C. Hochberger, Eds. Springer, May 2019, pp.
115–127.

[18] “IEEE Standard for IP-XACT, Standard Structure for Packaging, In-
tegrating, and Reusing IP within Tool Flows,” IEEE Std 1685-2022
(Revision of IEEE Std 1685-2014), pp. 1–750, 2023.

[19] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso,
J. Garside, K. Goossens, S. Goossens, S. Hansen, R. Heckmann,
S. Hepp, B. Huber, A. Jordan, E. Kasapaki, J. Knoop, Y. Li, D. Prokesch,
W. Puffitsch, P. Puschner, A. Rocha, C. Silva, J. Sparsø, and A. Tocchi,
“T-CREST: Time-predictable Multi-Core Architecture for Embedded
Systems,” Journal of Systems Architecture, vol. 61, no. 9, pp. 449–471,
2015.

[20] M. Schoeberl, Digital Design with Chisel. Kindle Direct Publishing,
2019, available at https://github.com/schoeberl/chisel-book.

[21] IEEE Standard VHDL Language Reference Manual, IEEE Computer
Society, 2019.

[22] H. J. Damsgaard, A. Ometov, and J. Nurmi, “Generating CGRA Pro-
cessing Element Hardware with CGRAgen,” in 2023 26th Euromicro
Conference on Digital System Design (DSD). IEEE, 2023, pp. 1–7.

[23] H. J. Damsgaard, “Reconfigurable Approximating Accelerators for Edge
Computing,” Ph.D. dissertation, Tampere University, 2024.

[24] H. Cook, W. Terpstra, and Y. Lee, “Diplomatic Design Patterns: A
TileLink Case Study,” in 1st Workshop on Computer Architecture
Research with RISC-V, vol. 23, 2017.

[25] H. J. Damsgaard, A. Ometov, and J. Nurmi, “Adaptive approximate
computing with cgragen,” IEEE Design & Test, 2025.

[26] E. R. Jellum, Y. Umuruglu, M. Orlandic, and M. Schoeberl, “fpga-
tidbits: Rapid Prototyping of FPGA Accelerators in Chisel,” in 2023
26th Euromicro Conference on Digital System Design (DSD). IEEE,
2023, pp. 153–160.

[27] B. J. Rosser, “Cocotb: a python-based digital logic verification frame-
work,” in Micro-electronics Section seminar. CERN, Geneva, Switzer-
land, 2018.

[28] R. Lin. ChiselTest. https://github.com/ucb-bar/chisel-testers2.
[29] M. Schoeberl, “The Educational RISC-V Microprocessor Wildcat,” in

Proceedings of the Sixth Workshop on Open-Source EDA Technology
(WOSET), 2024.

[30] ——, “Wildcat: Educational RISC-V microprocessors,” in Architecture
of Computing Systems – ARCS 2025, 2025.

[31] A. Dobis, K. Laeufer, H. J. Damsgaard, T. Petersen, K. J. H. Rasmussen,
E. Tolotto, S. T. Andersen, R. Lin, and M. Schoeberl, “Verification
of Chisel Hardware Designs with ChiselVerify,” Microprocessors and
Microsystems, vol. 96, p. 104737, 2023.

[32] M. Schoeberl, “Exploration of Network Interface Architectures for a
Real-Time Network-on-Chip,” in Proceedings of the 2024 IEEE 27th
International Symposium on Real-Time Distributed Computing (ISORC).
United States: IEEE, 2024, 2024 IEEE 27th International Symposium
on Real-Time Distributed Computing, ISORC ; Conference date: 22-05-
2024 Through 25-05-2024.

[33] “Chisel developers style guide,”
https://www.chisel-lang.org/docs/developers/style, 2025.

[34] C. Celio, “Chisel style guide,”
https://github.com/ccelio/chisel-style-guide, 2016.

[35] S. Beamer, “Teaching Agile Hardware Design with Chisel,” in 2024
27th Euromicro Conference on Digital System Design (DSD), 2024, pp.
161–167.

[36] “Davis In-Order (DINO) CPU,” https://github.com/jlpteaching/dinocpu,
2019.

[37] J. Lowe-Power and C. Nitta, “The Davis In-Order (DINO) CPU: A
Teaching-Focused RISC-V CPU Design,” in Proceedings of the Work-
shop on Computer Architecture Education, 2019, pp. 1–8.

[38] K. Jaic and M. C. Smith, “Enhancing Hardware Design Flows with
myHDL,” in 2015 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2015, pp. 28–31.

[39] O. Port and Y. Etsion, “Registerless Hardware Description,” 2021.
[40] F. Skarman and O. Gustafsson, “Spade: An HDL Inspired by Modern

Software Languages,” in 2022 32nd International Conference on Field-
Programmable Logic and Applications (FPL). IEEE, 2022, pp. 454–
455.

[41] R. S. Nikhil and Arvind, “What is Bluespec?” ACM SIGDA Newsletter,
vol. 39, no. 1, pp. 1–1, 2009.

[42] A. Kamppi, E. Pekkarinen, J. Virtanen, J.-M. Määttä, J. Järvinen,
L. Matilainen, M. Teuho, and T. D. Hämäläinen, “Kactus2: A Graphical
EDA Tool Built on the IP-XACT Standard,” Journal of Open Source
Software, vol. 2, no. 13, p. 151, 2017.

[43] E. Pekkarinen and T. D. Hämäläinen, “Modeling RISC-V Processor
in IP-XACT,” in 2018 21st Euromicro Conference on Digital System
Design (DSD), 2018, pp. 140–147.

[44] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar,
B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas, A. Magyar,
H. Mao, M. Moreto, A. Ou, D. A. Patterson, B. Richards, C. Schmidt,
S. Twigg, H. Vo, and A. Waterman, “The Rocket Chip Generator,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2016-17, Apr 2016.

[45] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,
A. Magyar, H. Mao, A. Ou, N. Pemberton, P. Rigge, C. Schmidt,
J. Wright, J. Zhao, Y. S. Shao, K. Asanović, and B. Nikolić, “Chip-
yard: Integrated Design, Simulation, and Implementation Framework for
Custom SoCs,” IEEE Micro, vol. 40, no. 4, pp. 10–21, 2020.

[46] E. R. Jellum, M. Schoeberl, E. A. Lee, and M. Orlandic, “Codesign of
Reactor-Oriented Hardware and Software for Cyber-Physical Systems,”
ACM Trans. Reconfigurable Technol. Syst., jun 2024, just Accepted.

[47] Y. Lee, A. Waterman, H. Cook, B. Zimmer, B. Keller, A. Puggelli,
J. Kwak, R. Jevtic, S. Bailey, M. Blagojevic et al., “An Agile Approach
to Building RISC-V Microprocessors,” IEEE Micro, vol. 36, no. 2, pp.
8–20, 2016.

[48] J. Vreča and A. Biasizzo, “Towards Deploying Highly Quantized Neural
Networks on FPGA Using Chisel,” in 2023 26th Euromicro Conference
on Digital System Design (DSD). IEEE, 2023, pp. 161–167.

[49] H. Genc, S. Kim, A. Amid, A. Haj-Ali, V. Iyer, P. Prakash, J. Zhao,
D. Grubb, H. Liew, H. Mao et al., “Gemmini: Enabling Systematic
Deep-Learning Architecture Evaluation via Full-Stack Integration,” in
2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE,
2021, pp. 769–774.

[50] P. Plagwitz, F. Hannig, J. Teich, and O. Keszocze, “DSL-based SNN
Accelerator Design using Chisel,” in Euromicro Conference on Digital
System Design, Paris, France, Aug. 2024.

[51] V. M. Milovanović and M. L. Petrović, “A Highly Parametrizable Chisel
HCL Generator of Single-Path Delay Feedback FFT Processors,” in 2019
IEEE 31st International Conference on Microelectronics (MIEL), 2019,
pp. 247–250.

[52] J. Zhao, A. Agrawal, B. Nikolic, and K. Asanović, “Constellation: An
Open-Source SoC-Capable NoC Generator,” in 2022 15th IEEE/ACM
International Workshop on Network on Chip Architectures (NoCArc),
2022, pp. 1–7.

Martin Schoeberl received his PhD from the Vienna
University of Technology in 2005. From 2005 to
2010, he was an assistant professor at the Institute
of Computer Engineering. He is now a professor
of real-time computer architecture at the Technical
University of Denmark. His research interest is in
hard real-time systems, time-predictable computer
architecture, and real-time Java. Martin Schoeberl
has been involved in several national and inter-
national research projects: JEOPARD, CJ4ES, T-
CREST, RTEMP, the TACLe and CERCIRAS COST

actions, and PREDICT. He has been the technical lead of the EC-funded
project T-CREST. He has more than 200 publications in peer-reviewed
journals, conferences, and books.

https://github.com/schoeberl/chisel-book
https://github.com/ucb-bar/chisel-testers2
https://www.chisel-lang.org/docs/developers/style
https://github.com/ccelio/chisel-style-guide
https://github.com/jlpteaching/dinocpu

14

Hans Jakob Damsgaard is a Doctoral Researcher
MSCA at Tampere University, Finland. He received
his M.Sc. (Eng.) degree in computer science and en-
gineering from the Technical University of Denmark,
Lyngby, Denmark. His research interests include
approximate computing and reconfigurable hardware
platforms.

Luca Pezzarossa is an Associate Professor in
Computer Engineering at the Technical University
of Denmark. He received his Ph.D. degree from
the same university in 2018. His research top-
ics include reconfigurable systems, real-time cyber-
physical/embedded systems, and embedded AI for
audio applications.

Oliver Keszocze received his PhD ein 2017 from
the University of Bremen, Germany. From 2018 to
2024 he was an assistant professor at the Friedrich-
Alexander-University (FAU), Erlangen, Germany.
Since 2024 he is an associate professor at the
Embedded Systems Engineering section of Denmark
Technical University (DTU), Lyngby, Denmark. His
research interests include logic synthesis, computer-
aided design, approximate computing and modern
hardware description languages.

Erling Rennemo Jellum is a Postdoctoral re-
searcher at the industrial Cyber-Physical Systems
group at the University of California, Berkeley. He
received his PhD from the Norwegian University of
Science and Technology in 2024. His research is
focused on embedded systems design.

Scott Beamer as an assistant professor of Computer
Science and Engineering at the University of Califor-
nia, Santa Cruz. He received his Ph.D. degree from
the University of California, Berkeley. His resesarch
interests include computer architecture, agile and
open-source hardware design, and high-performance
graph processing.

