
2025 IEEE International Symposium on Workload Characterization (IISWC)

miniGiraffe: A Pangenomic Mapping Proxy App

Jessica I. Dagostini
∗
, Joseph B. Manzano

†
, Tyler Sorensen

‡∗
and Scott Beamer

∗

{jessica.dagostini, tyler.sorensen, sbeamer}@ucsc.edu, joseph.manzano@pnnl.gov

∗
University of California, Santa Cruz, Santa Cruz, CA

†
Pacific Northwest National Laboratory, Richland, Washington

‡
Microsoft Research, Redmond, Washington

Abstract—Large, real-world scientific applications are often
complex, making them difficult to analyze, characterize, and
optimize. Such applications typically involve intricate I/O
patterns and library dependencies, which can make workflow
analysis and tuning difficult. Proxy applications offer a prac-
tical solution by emulating the essential characteristics of the
original application while significantly reducing complexity.

In this work, we present miniGiraffe, a proxy application
for Giraffe, a sophisticated genomics tool that operates over
a pangenome, a graph-based structure capturing genetic
variation across a species. We develop miniGiraffe using a
principled methodology: carefully characterizing Giraffe’s
behavior and validating that our proxy faithfully reproduces
its key computational features. miniGiraffe contains only 2%
of Giraffe’s codebase, while producing identical outputs for
the most computationally intensive code components and
closely matches Giraffe’s execution time and scaling behavior
in these regions. The simplified design of miniGiraffe enabled
rapid experimentation across multiple architectures, which we
utilize to perform an autotuning experiment of the mapping
workflow; we found that specializing parameters to inputs and
architectures provided a geometric mean speedup of 1.15×
and up to a 3.32× speedup over the default parameters.

Index Terms—proxy applications, pangenomes, genomics,
mapping

I. Introduction

Genomics applications are increasingly utilizing large-scale

compute platforms as data availability and computing power

is increasing. This is especially true for recent genomics

innovations, such as the pangenome, which enables the

simultaneous analysis of multiple genomes. These applications

are often computationally intensive, I/O-heavy, and built on

complex software stacks, making them difficult to analyze,

characterize, and optimize. Proxy applications offer a practical

way to address this complexity by replicating the core

behavior of the original application in a more lightweight

and tractable form.

As the size and complexity of pangenomes grow, so do

the computational demands of applications that operate on

them. This is especially true for the human pangenome,

which accurately captures critical genetic variations; its first

draft was only released in 2021 [20]. Mapping against such

complex reference structures can be extremely resource-

intensive—depending on the software used, and pangenome

mapping can take over 40 hours on large compute nodes

even for relatively small datasets [31]. Given the scientific and

medical importance of pangenomes, along with the novelty

of their computational methods, we believe they present an

TABLE I

Comparing Giraffe vs. miniGiraffe code

Giraffe miniGiraffe

∼50k lines of code ∼1k lines of code

∼350 source-files 2 source files

∼50 library dependencies 3 library dependencies

especially compelling opportunity for optimization by the

computational research community.

a) The Complexities of Scientific Applications: As is the
case with many scientific applications, pangenome mapping

applications are complex, consisting of large code bases

with many library dependencies. Even profiling the code

to determine performance-critical regions is difficult, let alone

developing and evaluating optimizations.

To manage this complexity, proxy applications (often re-

ferred to as proxies or miniapps) are commonly employed.

These are simplified versions of full applications that retain

key characteristics such as computational kernels, memory

behavior, or communication patterns; and as such, these

proxies can be used to understand system behavior and, in

turn, develop optimization strategies [1]. For example, proxies

have been used to improve the energy efficiency of large

physics simulations [34] and to evaluate different program-

ming models in shock hydrodynamics applications [14].

While benchmark suites for bioinformatics exist [2], these

simplified kernels do not capture the complexity of large,

real-world applications, such as pangenome mapping. As

such, insights from these benchmarks may not map back

to the large application. To the best of our knowledge, no

proxy application for this emerging pangenome computation

currently exists, which is precisely this work’s contribution.

b) Shrinking a Giraffe: The complex pangenome mapping

application we consider is Giraffe [31]. This application

uses variation graphs [8], a bioinformatics data structure to

represent linear genome data and their respective variations.

Giraffe is part of the larger toolkit VG, which contains

several other applications that utilize variation graphs, and

its mappings perform many traversals over the graph. These

tools all have complex inter-dependencies, making focused

analysis and optimization difficult.

This work presents miniGiraffe, a proxy application for

Giraffe. The development of this proxy began with a detailed

performance analysis of the original application to identify the

1

most critical functions, i.e., functions in the mapping procedure

that take the most amount of time. To do this, we combined

standard profiling tools with custom instrumentation. We

identified critical functions that, on average, accounted for

32% of the total runtime across a diverse set of datasets. Our

proxy app, miniGiraffe, was built to encapsulate these critical

functions, with I/O obtained by capturing the I/O to those

critical functions in Giraffe.

We validate miniGiraffe both functionally and in terms of

computational characteristics. Functionally, we demonstrate

miniGiraffe outputs exactly the same results as Giraffe.

For computational characteristics, we collect a series of

performance data, including overall runtime, parallel scaling,

and hardware performance counters, and show a close

correspondence to Giraffe. Specifically, we show that the

execution time of our proxy is within 8.7% of the execution

time of Giraffe’s critical functions.

c) Tiny but Mighty: A key component of a proxy is

its simplicity compared to the original application (Table I).

miniGiraffe has only 1K lines of code (LoC) across two source

files compared to the 50K LoC across 350 source files in

the original application. Furthermore, miniGiraffe uses only

three external libraries, while the original uses around 50.

As a result, miniGiraffe is substantially more straightforward

to compile, requiring a few lines in a Makefile, while the

original application contains a labyrinth of Makefiles and

dependencies.

Utilizing these simplifications, it becomes feasible to explore

the behavior of the application across different architectures

and find optimizations. In Section VII, we show the results

of running miniGiraffe across four different systems and the

impact their hardware characteristics have on performance.

Furthermore, we also explored other performance parameters,

such as parallel scheduling policies, batch size, and software

caching capacity. miniGiraffe enables exhaustive exploration

of these parameters, and the results show that specialized

parameters (i.e., through auto-tuning) is able to achieve up to

a 3.32× speedup and a geometric mean speedup of 1.15×.

d) Contributions: In summary, our contributions are:

• A workload characterization of the Giraffe pangenome

mapping tool (Section IV).

• miniGiraffe, a proxy which captures the key computa-

tional components of Giraffe (Section V).

• An evaluation of miniGiraffe across different systems

with different hardware configurations (Section VII).

• Auto tuning performance parameters across inputs and

systems, achieving speedups of up to 3.32× (Section VII).

We released the code for miniGiraffe as open-source at

https://github.com/jessdagostini/miniGiraffe to help compu-

tational researchers explore optimization strategies on this

type of workload.

II. Background

A. Mapping, Variation Graphs, and Pangenomes
DNA is composed of four types of bases (ACTG) that are

concatenated to form a long sequence. To read in a DNA

Fig. 1. Example variation graph. Each node in the graph holds a common

sequence in the genome reference. The blue vertices represent the original

single reference, and the red vertices are the variations included [3].

sample, it is replicated and broken into small sequences called

reads. These reads can be used to construct the DNA sequence

either from scratch (de novo assembly) or mapped against

an existing reference (alignment) [33]. Classically, reads have

been aligned against a single reference, but it has been shown

to be useful to focus analysis on the small variations, which

can be encoded in a variation graph (VG) [8]. Within a VG, a

path represents a sequence, branches represent variations, and

merges represent commonalities (Figure 1). The VG toolkit is
a framework that provides efficient VG data structures (which

have been shown to scale to GBs) [8]. VG is implemented

with C++ and OpenMP, and it also provides a library interface

for external applications.

VGs enable a more flexible reference that can incorporate

variations to avoid biases in analyses [29]. These references

are called pangenomes, which aim to represent the entire set

of genes within a population. The main difference between

pangenomes and single-reference variation graphs lies in

how the variances are captured. Single reference variation

graphs anchor all genomic variations to a single linear

reference genome. On a pangenome, the cross-reference

between hundreds (and, in the future, thousands) of different

DNA sequences is stored in the variation graph. Pangenomes

can be used at many scales, whether it be a population, species,

or even a metagenome [6], [24]. For example, analyzing a

human pangenome allows for the discovery of variants that

can be specifically associated with specific phenotypes but are

missing from a single reference genome [24]. In a pangenomic

setting, one can attempt to model the relationships between

all of the genomes in an analysis instead of an arbitrarily

chosen reference [6].

B. Giraffe Mapping

Changing paradigms from a single linear reference to a

pangenome graph brings new computational challenges. A

pangenome represented as a VG requires more memory as it

essentially holds multiple references. Furthermore, mapping

to a pangenome requires exploring many more combinations

and thus, a corresponding increase in computational expense.

Giraffe [31] is a short-read (sequences between 50 to 300 base

pairs) mapper for pangenomes, with a performance goal to

map reads at a speed similar to conventional (single-reference)

sequence alignment tools.

2

Giraffe uses a seed-and-extend approach to map reads to

the reference. In this approach, many candidate short seed

matches are evaluated, and top candidates are then extended

further [31]. Giraffe takes reads to map and the variation graph

reference as inputs. These reads can be single or paired-ended,

meaning that the DNA was sequenced from only one end

(single) or from both ends (paired) of the fragment [11]. Giraffe

uses three indices to seed the matching process: a Graph

Positional Burrows-Wheeler Transform [22], a minimizer, and

a distance index.

a) Graph Burrows-Wheeler Transform (GBWT): The

Burrows-Wheeler Transformation (BWT) permutes an input

string to make it more compressible [22]. Extending this

approach to graphs yields the Graph BWT (GBWT). This

approach stores haplotypes, groups of genomic variants that

tend to be inherited together [12], as paths in the graph,

enabling efficient storage and queries. GBWT further utilizes

a Full-text Minute-space (FM) index approach, which is a text

index based on the BWT [7]. This is the main data structure

that holds the pangenome graphs for the Giraffe mapper.

The GBWT is stored in a compressed file (GBZ [30]), which

is decompressed at runtime. Giraffe implements a “cached”

version of the GBWT object, in which visited nodes are

kept decompressed in memory. This allows for more efficient

repeated accesses to the same subsets of nodes.

b) Minimizers: Minimizers are an auxiliary index created

based on the reference. They utilize a k-mer (all possible

substrings of length k), its length, a window length, and

an order on the k-mers [35]. This strategy is used to

decrease memory usage in the mapping process and improve

computational efficiency. On Giraffe, a matching minimizer

between the read and the GBWT is called a seed.
c) Distance Index: The distance index maps the minimum

graph distance between seeds and clusters to improve speed.

The extension will happen within minimizers in high-scoring

clusters, where they are extended linearly to form maximal

gapless local alignments. Giraffe will try to extend seed

alignments in both directions [31].

C. Proxy Applications

When full applications become too complex to analyze

and optimize easily, a proxy application can be useful. The

representativeness of a proxy’s computational characteristics

is essential if the proxy is to be used to understand the

larger application and propose strategies for optimizing

it [1]. The goal of a proxy application is to represent

the original application workflow without simply repeating

it. Recreating all of the original application will naturally

require a similar amount of complexity, so to make the

proxy simpler, it must judiciously make simplifications and

omissions. On the other hand, a benchmark standardizes

evaluations, easing comparisons. Many benchmarks include a

reference implementation, which is a simple implementation

of the benchmark. A reference implementation can be similar

to a proxy application. Still, the key difference is that a

proxy application is designed to have the same key workload

characteristics as the original applications, while a reference

implementation is intended only to be functionally correct

according to the benchmark.

The methodology for building a proxy can vary, and

there is no one-size-fits-all solution. The literature contains

diverse accepted methodologies for designing proxies, ranging

from extracting key kernels from existing applications [19],

developing the proxy from scratch based on known important

kernels [28], or even implementing application patterns

without being functionally equivalent [9]. Despite different

ways to achieve the results, every proxy application needs to

match the primary computational bottlenecks of its parent

applications/workloads, but they may not necessarily perfectly

replicate all metrics [9], [28].

Furthermore, a proxy must be versatile and more portable

than the original application. That portability makes it suitable

to test the workload on different platforms, using different

strategies and different technologies [23]. This can be a

difficult task, as some scientific applications contain some rigid

functional requirements that are sometimes crucial for correct

execution that their proxy versions must address. Nevertheless,

deep workflow characterizations and understanding of the

target application, as one would perform to create a proxy

application, can also help identify the main algorithms and

make them portable [23].

III. Methodology

Our proxification consists of an iterative methodology of

profiling, analysis, inspection, and modification. Our initial

profiling efforts used standard tools (Linux perf & Intel

VTune). However, to better customize our profiling, we

resorted to manual instrumentation of the Giraffe mapping

tool, and we developed a C++ header to capture those profiling

results with low overhead. This header captures timestamps

from designated regions and stores them in a UThash hash

table [10]. Our header dumps all of the profiling data at the end

of execution to avoid introducing overhead during execution.

We subsequently analyze the gathered data to derive insights

into the application’s performance. To ensure we are not

TABLE II

Hardware platforms used for evaluation

local-intel local-amd chi-arm chi-intel

Vendor Intel AMD Cavium Intel

Processor

Xeon

8260

EPYC

9554

ThunderX2

99xx

Xeon

8380

Sockets 2 1 2 2

Frequency 2.4 GHz 3.1 GHz 2.5 GHz 2.3 GHz

Cores / socket 24 64 32 40

L3 cache / socket 35.75MB 256MB 64MB 60MB

L2 cache / core 1MB 1MB 256KB 1.25MB

L1I cache / core 32 KB 32KB 32KB 32KB

L1D cache / core 32 KB 32KB 32KB 48KB

Threads / core 2 2 1 2

DRAM 768GB 768GB 256GB 256GB

OS

Ubuntu

22.04.4

Debian

12

Ubuntu

22.04.5

Ubuntu

24.04.2

Compiler gcc 11.4.0 gcc 12.2.0 gcc 11.4.0 gcc 13.3.0

3

TABLE III

Input Sets Combining Short-Read and Pangenome References for Giraffe Workflow Characterization. The D1 short reads have two inputs,

differing only by the numbers in the braces ({}).

Input Sets Workflow Short Reads Reads (M) File Size (GB) Pangenome Reference Compressed File Size (GB)

A-human Single novaseq6000-ERR3239454 1.0 0.6 1000GPlons_hs38d1_filter 18.0

B-yeast Single SRR4074257 24.5 2.5 yeast_all 0.1

C-HPRC Paired D1_S1_L001_R{1,2}_004 8.0 1.6 hprc-v1.1-mc-grch38 3.1

D-HPRC Paired D1_S1_L002_R{1,2}_001 71.1 13 hprc-v1.0-mc-chm13 3.4

being biased by leftovers from previous similar executions,

we also use an approach that creates factorial repetitions for

our experiments. Guided by our analysis, we investigated

the code to gather knowledge about the key aspects of our

application. We iterated through this methodology several

times. Eventually, after a few iterations, we implemented and

revised our proxy based on our analysis and insights.

We performed our experiments on four servers (Ta-

ble II). Two of them (chi-arm and chi-intel) are from the

Chameleon Cloud testbed [15].

We used 4 different input sets for the workload character-

ization (Table III). Input set A-human uses the 1000GPlons

pangenome created by the VG team using variants from the

1000 Genome Project [5]. It maps a single-end read input from

the NA19239 individual [27]. Input set B-yeast also explores

the single-end workflow by using a yeast pangenome based

on a full set of yeast samples, available on UCSC Genome

Browser [16]. Input sets C-HPRC and D-HPRC explore the

paired-end workflow. Input set C-HPRC uses the latest version

of the human pangenome graph built using variants from

the Genome Reference Consortium Human Build 38 [25].

Input set D-HPRC uses the latest pangenome built from

the complete human genome sequence CHM13 [26]. Both

pangenomes are publicly available in the Human Pangenome

Project [20]. For both paired-end input sets, data comes from

different fragments of the genome sequence of the NA24385

individual’s son. The data collected comes from VG toolkit

on version v1.53.0 “Valmontone”.

IV. Understanding Giraffe

In this section, we provide an overview of the Giraffe

short-read pangenome mapping tool that is the target of this

work [31]. We dive deep into its functionalities and its code

structure, guided by an insightful workload characterization

that utilizes various inputs.

A. Giraffe Workload Characterization

VG toolkit’s source code is complex and divided into

modules and libraries to support the sophisticated set of tools

it provides for variation graph construction and analysis. Un-

derstanding Giraffe’s mapping call graph required significant

effort because of its complex sequence of calls for different

functions is spread across different libraries. That complexity

obscured the data of interest when using existing third-party

instrumentation tools. For our investigations, we manually

instrumented the application using timestamp collectors,

creating regions named according to the function/process

being executed. Given all of the dependencies and complexities

to compile Giraffe, we only utilize the local-intel machine for

these analyses. We run them many times using all the inputs

described in Section III.

From our instrumentation of a mapping execution, we

observe that all threads run all instrumented functions, and

most of them have short execution times but are frequently

repeated (Figure 2). Through the zoomed-in portion of the

plot, we noticed that Thread 0 only started working a half-

second after the others. This pattern could be observed in

all input sets run in both single and paired workflows, and

is probably due to executing code that is not instrumented.

Moreover, closer to the two-second mark, two occurrences

of process_until_threshold_c and cluster_seeds regions take

longer to finalize, indicating they can represent a significant

portion of the process.

Further investigation over the application’s code shows that

this behavior is due to the way the application spreads work

across threads. VG launches batches of parallel tasks using

its own wrappers around OpenMP pragmas. The application

uses C++ lambda functions to declare and include functions

as parameters to other function calls. These mapping lambdas

are buffered and scheduled by Giraffe’s main scheduler. This

task-scheduler code creates batches of short reads and assigns

them to threads. The scheduler (running on the main thread)

keeps track of how many threads are busy, and if no more

processing resources are available, it processes any queued

batches of reads left.

To obtain a better sense of which role each instrumented

region plays in the total execution time of the mapping

process, we aggregated the execution time collected for each

region in a single runtime per region for the whole execution

of each input set. Figure 3 depicts the average percentage of

the total execution time each instrumented region occupies.

We averaged the results across threads, and our experiments

found that threads typically had similar percentages. We have

instrumented most of the code, and in this figure, we removed

time spent on I/O and parsing input settings to focus on the

core of the workload.

The input set A-human spends a larger portion of its

execution time on IO and parsing since it has fewer reads.

Even with these characteristics, the A-human input set

also behaves similarly to the others. We observe that

the process_until_thereshold_c region was the most time-

consuming in all executions, varying from 7% to 32% on input

4

Fig. 2. Timeline of how Giraffe uses 16 threads for the annotated portions of the code while mapping input set A-human. Excludes pre-processing and

non-annotated regions. Each thread performs a varying mix of tasks of varying durations.

0

25

50

75

100

A−human B−yeast C−HPRC D−HPRC

Input Sets

%
 o

f
e
xe

c
u
ti
o
n
 t
im

e

Query

process_until_threshold_c
cluster_seeds
unpaired_alignments
annotation
process_until_threshold_a
process_until_threshold_b
find_seeds
discard_processed_cluster_by_score
cluster_score
find_minimizers
extension_score
mapq

Fig. 3. Percentage of runtime for each instrumented region for all input sets.

Times are aggregated per thread, and averaged across threads for each input.

sets A and D, respectively. Moreover, we observe a significant

increase in execution time for the threshold_c function when

processing a larger number of reads (input sets B-yeast and D-

HPRC). Additionally, we note that VG’s preprocessing causes

significant overhead when running small read datasets (input

set A-human). If we disregard the IO time, the threshold_c
function represents 46.4% of total computation time for the

input set A-human and 52% on B-yeast. This demonstrates

that half of the computational time of Giraffe is spent on

this function. The second most time-consuming region was

cluster_seeds which consumes 11.6% on input set B-yeast

and 21% on input set D-HPRC.

To better understand the impact of the input set on

the execution time, we analyze its parallel scalability

by sweeping the number of threads (and cores) for the

process_until_threshold_c function. Input sets with a greater

number of reads to map naturally consume more execution

time (Figure 4a). Input set D-HPRC took more than 8 hours

to complete sequentially, but reduced to ≈ 40 minutes using

48 threads. Input set A-human is the smallest, so its execution

10
1

10
2

10
3

10
4

1 2 4 8 16 24 32 35 481 2 4 8 16 24 32 35 481 2 4 8 16 24 32 35 481 2 4 8 16 24 32 35 48

Threads

R
u

n
ti
m

e
 (

s
e

c
)

Input Sets A−human B−yeast C−HPRC D−HPRC

(a) Execution time in log scale.

0

10

20

30

1 2 4 8 16 24 32 35 481 2 4 8 16 24 32 35 481 2 4 8 16 24 32 35 481 2 4 8 16 24 32 35 48

Threads

S
p

e
e

d
u

p

Input Set A−human B−yeast C−HPRC D−HPRC

(b) Parallel speedup.

Fig. 4. Giraffe’s parallel strong-scaling results for the extension.

times are smaller, and they shrink from 200 to 8.14 seconds

when running with 1 and 48 threads, respectively.

Regarding parallel scalability (Figure 4b), we observe that

the speedup for the smallest input (A-human) begins to plateau

after 35 threads, indicating that the benefits of adding more

resources diminish beyond this point. In contrast, the larger

input sets, which contain a greater number of reads to map,

do not exhibit this same behavior and continue to show

performance gains up to 48 threads. These results clearly

demonstrate the significant impact of the number of reads

required to map on the application’s execution time.

5

TABLE IV

VTune Top-Down Metrics from Giraffe mapping A-human input set.

Data within () is the second level of top-down analysis, being

front-end latency and memory operations, respectively.

Front-End Back-End Bad Spec. Retiring

Bound % 23.5 (10.9) 22.8 (15.6) 10.2 43.4

To move beyond execution time and understand how

effectively the hardware is utilized, we performed a Top-

Down Microarchitecture Analysis using Intel’s VTune Profiler

[13] and present the results in Table IV. This top-down result

reveals a relatively efficient execution profile, but with clear

areas for optimization. The retiring percentage demonstrates

that a significant portion of the work is experiences few stalls.

However, the performance is considerably affected by bounds

from both the front-end and the back-end, which is typical for

full-size real-world applications as opposed to simple math

kernels. Looking deeper into the back-end results, memory

operations contribute 15.6% to the stalls, a finding consistent

with our earlier observation that the number of reads is critical

to performance. This suggests the CPU is frequently stalled

waiting for data from the memory subsystem and could be

a key area for optimization. Similarly, the front-end latency

at 10.9% points to potential issues with instruction fetching

and decoding. Although graph traversals are a significant

portion of the extension, the rest of the workload makes the

overall characteristics more complex and compute-intensive

than typical graph kernels [4].

Based on our characterization, we observe that two main

regions play significant roles in the mapping process and

execution time: process_until_threshold_c and cluster_seeds.
We focused our further analysis of Giraffe on these portions.

B. Giraffe’s Read Mapping Process

The mapping function is the core of Giraffe’s execution.

Running in each thread, each workflow preprocesses the data

to be mapped slightly differently. The first operation finds the

minimizers and the distance index information for the short

read being processed. Once found, the application creates a

vector of seeds. A seed is a pair containing the pangenome

graph node and a score indicating the probability of a match

when starting the mapping walk from that node. These seeds

are crucial for the rest of the mapping process since they

are where the walks over the graph comparing the read and

reference will start.

With the seeds found, the application calls the first signif-

icant code region: cluster_seeds. This region is responsible

for creating clusters of the seeds found for that specific input

read and determining quality scores for them to facilitate the

mapping strategy. Such clusters are the main input for the next

big step in the process: process_until_threshold_c. This region
is responsible for finding possible matches and evaluating

their quality. This region calls the extension function, which

performs the whole walk and compare operation. Using the

seeds’ cluster found for that match, this extension function

considers mappings by extending matches (i.e., a new node in

the graph is considered a match with the read) according to

their characteristics. If the considered node has a high match

score, the function walks over the graph to that next node,

comparing its set of characters with a specific offset in the

sequence read. It continues extending until it stops when the

end of the short read is reached. This process is called seed-
and-extend, as briefly discussed in Section II. Depending on

the extension’s quality, which is determined using a scoring

function, the batched reads are evaluated as matched or not

in the reference, and the result is generated.

With the extensions for the read found, the application

enters a post-processing phase. The phase performs more

data refinement to guarantee that the matches are accurate.

The first step scores the extensions found for that cluster

and discards non-critical information such as extensions with

low scores. The application then continues to the alignment

phase, which generates the mapping output.

V. miniGiraffe: the Giraffe Proxy Application

We make the following observations based on Giraffe’s

workload characterization (Section IV-A): 1) The mapping

operation, specifically the function that extends the search

from the seeds, is the most time-consuming kernel within

Giraffe, followed by the function responsible for clustering the

seeds. We call these functions the critical functions in Giraffe;

2) Giraffe and VG have a complex source code that contain

many dependencies for data structures and functionalities,

which makes it difficult to experiment with and modify the

code, e.g., to develop new optimizations; 3) Beyond software

optimizations, the complexity of Giraffe makes it difficult

to directly develop a hardware accelerator for its real-world

pangenome mapping approach.

Given these observations, we propose miniGiraffe, a proxy

application based on the Giraffe pangenome mapping tool.

miniGiraffe makes simplifications to make the application

lightweight while still capturing the key features of Giraffe’s

critical functions. For these key functions, miniGiraffe pro-

duces the exact same output. Using this proxy, researchers

can explore various optimization strategies for pangenome

mapping, e.g., reducing execution time, testing new scheduling

strategies to improve scalability, reducing memory consump-

tion, and optimizing storage accesses.

The process to build this proxy was based on the observa-

tions made during the workload characterization of Giraffe.

We followed an iterative methodology that consisted of

profiling the parent application, understanding its bottlenecks,

implementing the functions we found to be significant for

the application’s execution time, and validating the results

produced by the proxy.

miniGiraffe is based on the seed-and-extension process

from the full application. This step consumes the majority of

the execution time on average across our input sets, and it

is where the actual comparison between the short-read and

the pangenome data (variation graph) occurs (Section IV-B).

6

However, because these functions are deep within the Giraffe

code, the inputs for miniGiraffe include some preprocessing

Giraffe already performs. We extract these inputs after

preprocessing from Giraffe right before executing the seed-

and-extension process.

The preprocessed data that is miniGiraffe’s input consists

of the reads to be mapped and their respective seeds found

on the pangenome. Seeds consist of pairs of memory offsets

and structures that point to nodes in the variation graph.

Along with the seed information, miniGiraffe also takes

as input the pangenome reference as a GBWT graph. As

mentioned in Section II-B, Giraffe uses the compressed GBZ

file format to store GBWT graphs [30], and we kept the

usage of this file format in our proxy. The final inputs

are parameters for miniGiraffe to control the number of

threads, batch size for parallel execution, and an initial

capacity for the CachedGBWT structure. Users can also easily

enable/disable instrumentation of the execution and hardware

counter collection using input options.

Once miniGiraffe has loaded the input, it begins executing

the mapping process by iterating over each short-read and

its respective seeds in nested loops, which replicates the

original application’s behavior. In miniGiraffe, this main outer

loop is parallelized, and its structure eases experimentation

with schedulers different than Giraffe’s. Focusing on enabling

straightforward exploration of optimizations while keeping

as close as possible to the parent application’s behavior, mini-

Giraffe also uses OpenMP. Our results show that OpenMP’s

dynamic scheduling of batches of reads provides similar

execution time and scaling, at least up to 16 threads, when

compared with the complex VG scheduler used by Giraffe.

Since miniGiraffe focuses on the mapping process, it does

not implement the post-processing Giraffe applies to the

mapping results. Thus, miniGiraffe’s output consists of the

raw mapping results, i.e., the offsets and scores of each match.

To validate the functionality of miniGiraffe, we can export the

expected output after the corresponding mapping operations

from the full application.

VI. miniGiraffe Validation

a) Functional Validation: A proxy app should have

similar, if not exactly the same, outputs as the region of the

parent application it is derived from. This provides confidence

that the proxy is performing computation representative of

the original. For the validation, we export the extensions

found by Giraffe by running the selected input sets. Since

such extensions are also the output from miniGiraffe, we

can load both outputs and simply validate by comparing the

outputs. The validation asserts two properties: (1) all of the

expected queries are found in the proxy output; and (2) the

proxy output does not contain matches that are not included

in the expected output. Our validation shows a 100% match

between both the proxy and the parent outputs for all input

sets, demonstrating miniGiraffe’s accuracy.

b) Performance Validation: To validate that miniGiraffe

is computationally representative of Giraffe, we compare per-

TABLE V

Hardware performance counter measurements for validation of

seed-and-extension on input set A-human.

Application Inst. IPC L1DA L1DM LLDA LLDM

miniGiraffe 1.49e12 1.91 4.19e11 1.69e9 2.88e8 2.11e8
Giraffe 1.33e12 1.67 3.87e11 4.54e9 3.83e8 2.12e8

TABLE VI

Execution time (seconds) comparison between Giraffe and miniGiraffe

across 4 inputs sets.

A-human B-yeast C-HPRC D-HPRC

miniGiraffe 186 4302 2741 27045

Giraffe 171 4068 2561 24989

% diff over Giraffe 8.77 5.75 7.02 8.22

formance and hardware performance counter measurements

for both. We collect the following:

• IPC (instructions per cycle)

• Application execution time

• Data cache accesses and misses

• Cache miss rates

Since local-intel hosts the VG application, we also used

this machine to collect all of the performance validation data.

When collecting these metrics for Giraffe, we instrumented

only the code sections the proxy covers, specifically the

seed-and-extend functions. This allows us to only measure

the components of Giraffe that miniGiraffe aims to capture,

without the additional overhead, e.g., data pre- and post-

processing. The performance counters are quite similar for

both executions (Table V). Cache access and misses are

indicated by L1 Data Access (L1DA) and L1 Data Misses

(L1DM), as well as last-level cache data access (LLDA) and

misses (LLDM). The measurements were collected with input

set A-human, because it was the smallest input, making single-

threaded execution more tolerable.

The total instruction count between miniGiraffe and Giraffe

is similar; however, miniGiraffe’s IPC is slightly higher than

Giraffe’s, and thus, miniGiraffe’s total cycles were fewer than

Giraffe’s. miniGiraffe accesses the L1D cache more times but

has substantially fewer misses. The miss rate is 0.004 for

miniGiraffe and 0.011 for Giraffe. At the last-level cache

(LLDA and LLDM), Giraffe performs more accesses, but both

have a similar number of misses. Thus, miniGiraffe has a

higher miss rate of 0.73 compared to 0.55 for Giraffe. We

hypothesize that these cache differences are due to other

small operations that Giraffe performs intermittently with the

extension, which can make the data in the L1 cache change

more frequently than miniGiraffe. Those additional L1D cache

misses for Giraffe are well-handled by the next levels of the

cache hierarchy. We consider the tight congruence of last-

level cache misses to be the most important indicator that

the proxy is stressing the same aspects of the system.

7

To quantitatively support this validation, we performed

a cosine similarity analysis between the hardware counters,

technique used in [28]. In this analysis, commonly used in text-

mining algorithms, the metric is collected from the cosine

angle multiplication value of two non-zero vectors being

compared [17]. A value closer to 1 indicates that the two

vectors are similar. Applying this technique to our metrics,

we obtained a score of 0.9996, indicating that parent and

proxy applications have nearly identical characteristics.

To conclude the performance validation, we demonstrate

that the miniGiraffe’s execution time is extremely close to

Giraffe’s and has a maximum difference of 8.7% across all

input sets (Table VI). We ran both miniGiraffe and Giraffe

three times each, measured execution times, and calculated

the average of these executions for all input sets. Since the

goal of proxy applications is to reproduce key workload

properties, this demonstrates that our proxy also achieves

similar performance, which is a great bonus.

VII. Case Studies Utilizing miniGiraffe

To demonstrate the proxy’s utility, we performed two case

studies. The first explores the behavior of this pangenome-

mapping workload on different systems. Due to the proxy’s

simplicity, compiling and running the workload on the four

different systems (described in Table II) required only minimal

effort. The second explores parameter tuning to accelerate

the workload, including how the workload’s characteristics

impact the tuning. Both case studies using the proxy required

far less development effort than they would have required if

the original Giraffe code base were used.

A. Parallel Scaling on Different Systems

To observe the impact of different hardware characteristics

on pangenome mapping, we execute miniGiraffe on the four

different systems described in Table II. The systems vary in

hardware characteristics such as core count, threads per core,

DRAM capacity, cache hierarchies, core microarchitectures,

and vendors. The combination of system characteristics allows

us to not only demonstrate how portable our proxy application

is, but also brings a broader view of the behavior of this

important workload on different systems. Figure 5 depicts the

parallel scalability for each of the four input sets. The dotted

black line represents the ideal linear speedup for each machine.

The systems with less memory (chi-arm and chi-intel), run

out of memory for input set D.

We can observe that each system presents significant

differences in scalability, with both Intel-based systems (local-

intel and chi-intel) demonstrating the most sublinear results

due to scaling across sockets and hyperthreads. Once each core

is used by one thread (48 threads for local-intel, 80 threads

for chi-intel), using the additional hyperthread contexts does

not provide much benefit. Multiple threads in the same core

contend for core and cache resources. Chi-intel demonstrates

near-linear speedups on input set B-yeast for up to 72 threads,

while the other two inputs have impaired scalability after 32

threads. On the local-intel system, all input sets scale linearly

chi−arm chi−intel

local−intel local−amd

111112222244444 88888 1616161616 3232323232 6464646464111222444 888 161616 323232 646464111111112222222244444444 88888888 1616161616161616 3232323232323232 6464646464646464111111112222222244444444 88888888 2424242424242424 4848484848484848 111112222244444888881616161616 3232323232 6464646464111222444888161616 323232 646464727272 969696 12
8

12
8

12
8

16
0

16
0

16
0111111112222222244444444888888881616161616161616 3232323232323232 64646464646464647272727272727272 9696969696969696 12

8
12

8
12

8
12

8
12

8
12

8
12

8
12

811111111222222224444444488888888 2424242424242424 4848484848484848 7272727272727272 9696969696969696

111112222244444 88888 1616161616 3232323232 6464646464111222444 888 161616 323232 646464 727272 969696111111112222222244444444 88888888 1616161616161616 3232323232323232 6464646464646464 7272727272727272 9696969696969696111111112222222244444444 88888888 2424242424242424 4848484848484848 7272727272727272 9696969696969696 11111222224444488888 1616161616 3232323232 6464646464111222444888 161616 323232 646464 727272 969696 12
8

12
8

12
811111111222222224444444488888888 1616161616161616 3232323232323232 6464646464646464 7272727272727272 9696969696969696 12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
811111111222222224444444488888888 2424242424242424 4848484848484848 7272727272727272 9696969696969696

0

25

50

75
10

0

0

25

50

75
10

0

Threads

S
p

e
e

d
u

p

InputSet A−human B−yeast C−HPRC D−HPRC

Fig. 5. Parallel scalability of miniGiraffe on four different systems. The

dotted black line represents the ideal speedup for each system. Both servers

chi-arm and chi-intel ran out of memory for input set D-HPRC.

up through 24 threads (1 socket without hyperthreads), obtain

slight speedups with 2 sockets, and plateau or even slow down

with hyperthreads.

In contrast, the local-amd and the chi-arm systems often

demonstrate near-linear speedups for almost all input sets.

Local-amd, which has only a single socket, enjoys near-linear

speedups until using hyperthreading (beyond 64 threads), at

which point it still obtains an appreciable speedup. At 128

threads, local-amd’s speedups are well below linear, but the

highest for this experiment with speedups of 86.9×, 78.2×,

88.3×, and 88.7× for input sets A, B, C, and D, respectively.

On chi-arm, only input set A-human has sublinear speedups,

and it plateaus after 32 threads. This might be explained by

input set A’s smaller size. Since we process sequences in

parallel, the scalability of the application is directly linked to

the number of short reads each thread will be responsible for

mapping. Another interesting point to notice is that it is an

example of great scalability of the application executing on a

non-x86 machine.

Despite presenting the most consistent speedups, the

absolute execution times from chi-arm are the slowest for

all input sets. Table VII present the fastest execution times

across all input sets and machines. Focusing on the execution

time from local-amd and chi-arm, we observe a difference

of more than 8× for input set A-human and 4× for input

set C-HPRC. Another significant difference is shown on the

execution time of D-HPRC over the local servers, with local-

intel performing almost 3× slower than local-amd. Even

though chi-intel’s performance plateaus, its fastest executions

are the second fastest results. The fastest two systems have the

largest last-level caches with local-amd having 256MB and chi-

intel having 60MB per socket. The main operation performed

by miniGiraffe is data comparisons, which is data-intensive

and can thus benefit from large-scale cache locality. These

performance results demonstrate how this workload is directly

affected by the memory and hardware cache capabilities of

the system being used. Focusing on ways to improve cache

8

TABLE VII

Fastest execution times (in seconds) for each input set across

different systems.

Input Set local-intel local-amd chi-arm chi-intel

A-human 9.06 1.60 13.42 3.44
B-yeast 113.75 42.09 137.86 73.44
C-HPRC 74.44 23.25 97.95 59.36
D-HPRC 681.82 229.42 – –

locality and parallelism can accelerate the workload, which

we consider in the next case study.

B. Exposing, Tuning, and Analyzing Parameters

Motivated by the scalability results, we sought to inves-

tigate how different parameters and their interactions with

the hardware platform affect the application’s performance.

Utilizing the simplicity of our proxy miniGiraffe, users can

easily experiment with different application strategies and

apply tuning techniques. mimiGiraffe offers three different

tuning parameters: scheduling technique, batch size, and

initial CachedGBWT capacity (a software construct). For

scheduling, we extended the initial OpenMP implementation

by implementing a work-stealing scheduler using C++ threads.

In this strategy, the total workload is spread across threads

equally, but each thread will process its workload in batches

of batch size short reads. If a thread finishes its work before

others, it can steal a batch-size chunk of work from another

thread in a round-robin approach using an atomic read-modify-

write instruction. Our approach is lightweight and intended

to remove some of the overhead, imbalance, or loss of locality

that the default OpenMP dynamic scheduler might have.

Beyond the choice of parallel scheduler, exposing the

parameters required code changes and intentional design

for miniGiraffe. Although Giraffe has a batch size parameter,

it is not easily changed, and we wanted to experiment with

changing it from its default value of 512. Giraffe uses a

CachedGBWT to hold uncompressed portions of the reference

pangenome (Section II-B). Although this structure can grow

by performing an expensive rehash operation, we find setting

its initial capacity to be impactful. We modified the code to

expose this parameter so it could be easily changed from its

default value of 256.

We conducted an auto-tuning experiment across all our

servers to understand the impact of these parameters on this

workload and potential benefits. This experiment is leveraging

the ease with which our proxy can run on different platforms,

as well as changing parameters that were originally fixed or

not externally configurable. To be able to run all four input

sets on all machines for all combinations of parameters, we

subsampled our input sets. For each input set, we only used

the first 10% of reads. This subsampling both reduced the

total experiment time but it also shrank the large D-HPRC

so it no longer ran out of memory on some systems.

To reduce the parameter search space, we first investigated

the impact of the initial CachedGBWT capacity. From a prelim-

0.
0

0.
5

1.
0

1.
5

256 2048 4096 8192 16384 32768 65536

Init. CachedGBWT Capacity

S
p
e
e
d
u
p

Scheduler omp ws

Fig. 6. Speedup results for different initial CachedGBWT capacities against

no usage of this caching structure. Tests collected with the C-HPRC test case

at local-intel machine

TABLE VIII

Configuration parameters for fastest results, including batch size

(BS columns), CachedGBWT capacity (CC columns), and scheduler

(OpenMP unless marked with
∗
for work-stealing).

local-intel local-amd chi-arm chi-intel

Input Set BS CC BS CC BS CC BS CC

A-human 256 4096 512 2048 256 4096 128 2048

B-yeast 128 512
∗

128 512 256 1024
∗

128 1024
∗

C-HPRC 256 4096 128 4096 512 256
∗

128 4096

D-HPRC 128 2048 1024 4096 1024 2048
∗

512 1024

inary test using one of the largest inputs (C-HPRC) on local-

intel (Figure 6), we observe that the maximum speedups occur

when the initial capacity is 4096 or less for both schedulers

(OpenMP and our in-house work-stealing scheduler). Larger

initial capacity presents performance degradation. Thus, in

subsequent explorations, we limited the considered initial

capacity to 4096 or less.

We exhaustively auto-tune (full cross-product) across the

scheduler used, batch size, and initial CachedGBWT capacity.

For the batch size, we considered batch sizes in powers of 2

from 128 to 2048. For each platform, we use the maximum

number of available thread contexts (including hyperthreads),

which is 96, 128, 64, and 160 on local-intel, local-amd, chi-

arm, and chi-intel. For this analysis, we consider the makespan,
i.e. the end-to-end execution time.

1
For each system and input,

we identify the best performing set of parameters and present

their performance in Figure 7 and report those configuration

parameters in Table VIII.

By tuning the parameters, we are able to achieve significant

speedups on all input sets on almost all systems. Interest-

ingly, most of the best performers do not share the same

configuration, nor use the default values (OpenMP, 512 batch

size, 256 initial CachedGBWT capacity). Despite our focus

on lightweight performance, our work-stealing scheduler is

the fastest on only 5 of 16 scenarios, with 3 of them on the

chi-arm system. The most significant overall speedup from

all of our tuning was 3.32×, and it was achieved on input

set A on the chi-arm system. The smallest overall speedup

1
We use the term makespan since in the scheduling literature “execution

time” can refer to the aggregate CPU time as opposed to wall clock time.

9

1.15x

3.32x

1.3x

2.36x

1.16x

1.16x

1.22x

1.29x

1.01x

1.02x

1.58x
1.06x

1.07x

1.07x

1.7x
1.17x

C−HPRC D−HPRC

A−human B−yeast

local−intel
local−amd

chi−arm
chi−intel

local−intel
local−amd

chi−arm
chi−intel

local−intel
local−amd

chi−arm
chi−intel

local−intel
local−amd

chi−arm
chi−intel0

5

10

0

25

50

75

10
0

0

1

2

3

0

3

6

9

Machine

M
a

k
e

s
p

a
n

Setting original tuned

Fig. 7. Makespan (seconds) comparison of the best tuning performers against

the default parameters for each input set over each machine. Executions

use all available threads in each machine, being 96, 128, 64, and 160 for

local-intel, local-amd, chi-arm, and chi-intel, respectively.

was 1.01×, and it occurred on input set B on the local-amd

system. In fact, input set B-yeast only benefits substantially

from tuning on the chi-intel machine. Only input set C-HPRC

presented a smaller variability in speedup between systems.

The geometric mean speedup for each input set is respectively

1.36×, 1.07×, 1.10×, and 1.11×.

Regarding absolute performance, the local-amd machine

was the fastest for all input sets but gained the least speedups

from parameter tuning. The makespan of the fastest execu-

tions on local-amd were 0.193 s, 4.18 s, 2.53 s, and 22.5 s for

inputs A, B, C, and D, respectively. The second fastest system

varied for each input set. These results demonstrate that the

application is less affected by different tuning parameters

when running on powerful hardware (e.g., with a large

capacity L3 cache). They also indicate that the combination

of how much work each thread runs, alongside hardware

characteristics, directly impacts the application’s performance.

Thus, finding good combinations of parameters can be crucial

for performance improvements on each different set of inputs

and servers. For instance, D-HPRC and B-yeast have their

best speedups from tuning on chi-intel machine, which has

the highest number of available threads. However, both the

A-human and C-HPRC input sets have their makespan most

impacted by tuning on the local-intel machine, which has the

smallest hardware cache capacity.

To understand the nature of the parameter space, we plot

the makespan across all parameter combinations for input set

D-HPRC on the chi-intel system (Figure 8). We selected this

system since it had the largest variance in parallel scalability

omp ws

25
6

51
2

10
24

20
48

40
96 25

6
51

2
10

24
20

48
40

96

128

256

512

1024

2048

Init. CacheGBWT

B
a
tc

h
 S

iz
e

Makespan
40 50 60 70

Fig. 8. Heat map with makespan distribution of all different combinations

of tuning parameters over input set D-HPRC at chi-intel machine.

and this input since it is the largest. We observe a significant

difference between the best and worst performers on this

system. Most of these combinations significantly impact

performance, demonstrating the importance of parameter

tuning. By choosing the best tuning combination, it is possible

to avoid a 1.76× slowdown for this input set on this system.

More interestingly, the default parameters produce one of the

slowest executions.

To conclude this case study, we performed an Analysis of

Variance (ANOVA) to quantify the impact of each parameter

on the makespan. The analysis reveals that the initial

CachedGBWT capacity is the most impactful parameter in

this case, demonstrating a statistically significant effect on

the results (p=0.047). In contrast, neither the number of

Batches (p=0.878) nor the choice of Scheduler (p=0.859) was

found to have a significant influence on performance for this

combination of input set and server The proxy significantly

eased performing this case study, as it eased modifying,

instrumenting, and porting the code. This demonstrates how

miniGiraffe will be an excellent platform for future research

in accelerating pangenome read mapping.

VIII. Related Work

Existing proxy applications have been used to understand

the energy efficiency of big applications [34], to port protein-

ligand docking programs to different HPC computer archi-

tectures [32], and to test different programming models over

a shock hydrodynamics application [14]. The first proxy

solves elastic wave equations, and allowed researchers to

learn weaknesses and improve proxy performance and energy

efficiency by focusing on memory-centric operations [34]. For

the second, the proxy application based on the AutoDock-GPU

particle-grid-based program [18] was ported to run in GPUs

from different HPC facilities and vendors. For the third and

last, the proxy was ported to different programming models

such as Chapel, Charm++, Liszt, and Loci [14]. The authors

were able to reduce the program source code by 80% when

comparing the Loci and Chapel with the MPI versions. All

10

of these examples show how versatile proxy applications are.

Having a smaller version of a real-world complete scientific

application can allow the easiest investigation of energy

efficiency, hardware portability, and new coding approaches.

In the field of genomics, many tools present different

complexities, mainly regarding their big data. These tools

need to be aware of their memory usage and data storage and

how well they construct their data structures and algorithms

to perform queries as efficiently as possible. Moreover, these

kernels are in growing demand, which also requires more

specialization in the computer science aspect to deal with

the specificities of these kernels. There are some existing

benchmarks that aim to enable the evaluation of existing

hardware and technologies for genomics necessities, such as

BioBench [2] and GenArchBench [21].

BioBench is a set of benchmark applications that aims to

reflect the diversity of bioinformatics codes in use [2]. This

is one the first benchmarks focused on genomics and it has

tools for sequence similarity searching, multiple sequence

alignment, sequence profile searching, and genome-level

alignment. GenArchBench is the first genomics benchmark

suite targeting Arm HPC architectures [21]. Their set of tools

comprises algorithms focusing on seed chaining, FM-index

search, k-mer counting, de Bruijn graph construction, among

others. Most of the codes were optimized to run on x86

architectures, which the authors describe to be a challenge

to port to non-x86 platforms.

Despite the efforts focusing on benchmarks and the broader

existing application of proxy apps, by the time of this

work, there are no benchmark algorithms that focus on

pangenomes. We believe that having a proxy application

based on a pangenome mapping tool will bring a complete

tool for developing new technologies aiming to support and

enhance genomics algorithms. Pangenomes will soon move

from research and lead to better quality healthcare, so it

is imperative we are able to support them computationally.

When simulating an existing tool with closer characteristics,

we can not just provide improvements to the original tool

but also use a test case with greater accuracy to test new

developments in general.

IX. Conclusions

In this work, we presented miniGiraffe, a proxy application

for the pangenome mapping process within the Giraffe tool.

miniGiraffe was designed to reproduce the Giraffe’s critical

functions and key behaviors while being much smaller and

easier to work with. miniGiraffe’s outputs exactly match

Giraffe’s mapping behavior. Additionally, we were able to use

our proxy to understand the performance of this workload in

different machines. Porting miniGiraffe to different hardware

was straightforward and allowed us to observe the impact of

L3 cache in this workload. Moreover, by using an auto tuning

approach, we were able to accelerate the application by at

most 3.36×, achieving an overall geometric mean of 1.15×.

Acknowledgment

We are grateful for all the input and guidance from the

UCSC Genomics Institute VG Team, in particular to Benedict

Paten, Jouni Siren, Xian Chang, and Adam Novak, for all

the guidance and support with the VG Giraffe investigation.

Part of the results presented in this paper were obtained

using the Chameleon testbed supported by the National

Science Foundation. This work was partially supported by

the US DOE Office of Science project “Advanced Memory to

Support Artificial Intelligence for Science" at PNNL. PNNL

is operated by Battelle Memorial Institute under Contract

DEAC06-76RL01830.

References

[1] O. Aaziz, J. Cook, J. Cook, T. Juedeman, D. Richards, and C. Vaughan,

“A methodology for characterizing the correspondence between real

and proxy applications,” in 2018 IEEE International Conference on Cluster
Computing (CLUSTER), 2018, pp. 190–200.

[2] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob, C.-W.

Tseng, and D. Yeung, “Biobench: A benchmark suite of bioinformatics

applications,” in IEEE International Symposium on Performance Analysis
of Systems and Software, 2005. ISPASS 2005., 2005, pp. 2–9.

[3] J. A. Baaijens, P. Bonizzoni, C. Boucher, G. Della Vedova, Y. Pirola,

R. Rizzi, and J. Sirén, “Computational graph pangenomics: a tutorial

on data structures and their applications,” Natural Computing, vol. 21,
no. 1, pp. 81–108, 2022.

[4] S. Beamer, “Understanding and improving graph algorithm performance,”

Ph.D. dissertation, University of California, Berkeley, 2016.

[5] G. P. Consortium, A. Auton, L. Brooks, R. Durbin, E. Garrison, and

H. Kang, “A global reference for human genetic variation,” Nature, vol.
526, no. 7571, pp. 68–74, 2015.

[6] J. M. Eizenga, A. M. Novak, J. A. Sibbesen, S. Heumos, A. Ghaf-

faari, G. Hickey, X. Chang, J. D. Seaman, R. Rounthwaite, J. Ebler,

M. Rautiainen, S. Garg, B. Paten, T. Marschall, J. Sirén, and E. Garrison,

“Pangenome graphs,” Annual Review of Genomics and Human Genetics,
vol. 21, no. 1, pp. 139–162, 2020.

[7] P. Ferragina and G. Manzini, “Indexing compressed text,” Journal of the
ACM (JACM), vol. 52, no. 4, pp. 552–581, 2005.

[8] E. Garrison, J. Sirén, A. M. Novak, G. Hickey, J. M. Eizenga, E. T.

Dawson, W. Jones, S. Garg, C. Markello, M. F. Lin et al., “Variation
graph toolkit improves read mapping by representing genetic variation

in the reference,” Nature biotechnology, vol. 36, no. 9, pp. 875–879, 2018.
[9] W. F. Godoy, J. Delozier, and G. R. Watson, “Modeling pre-exascale amr

parallel i/o workloads via proxy applications,” in 2022 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
2022, pp. 952–961.

[10] T. D. Hanson, “uthash: A hash table for c structures,” https://

troydhanson.github.io/uthash/, 2024, accessed: 2024-06-03.
[11] I. Illumina, “Paired-end vs. single-read sequencing technology,”

https://www.illumina.com/science/technology/next-generation-

sequencing/plan-experiments/paired-end-vs-single-read.html, accessed:

2024-12-18.

[12] N. H. G. R. Institute, “Haplotype,” https://www.genome.gov/genetics-
glossary/haplotype, 2023, [Accessed 22-11-2023].

[13] Intel, “Intel VTune Profiler Find and Fix Performance Bottlenecks

Quickly and Realize All the Value of Your Hardware,”

https://www.intel.com/content/www/us/en/developer/tools/oneapi/

vtune-profiler.html\#gs.j8osh4, 2024, [Accessed 19-12-2024].

[14] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. Devito,

R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz, and C. H.

Still, “Exploring traditional and emerging parallel programming models

using a proxy application,” in 2013 IEEE 27th International Symposium
on Parallel and Distributed Processing, 2013, pp. 919–932.

[15] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,

M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti,

A. Barnes, F. Halbach, A. Rocha, and J. Stubbs, “Lessons learned from the

chameleon testbed,” in Proceedings of the 2020 USENIX Annual Technical
Conference (USENIX ATC ’20). USENIX Association, July 2020.

11

[16] W. J. Kent, R. J. H. Haussler et al., “The ucsc genome browser,”

Genome Research, vol. 12, no. 6, pp. 996–1006, 2002. [Online]. Available:
https://genome.ucsc.edu/

[17] A. R. Lahitani, A. E. Permanasari, and N. A. Setiawan, “Cosine similarity

to determine similarity measure: Study case in online essay assessment,”

in 2016 4th International Conference on Cyber and IT Service Management,
2016, pp. 1–6.

[18] S. LeGrand, A. Scheinberg, A. F. Tillack, M. Thavappiragasam,

J. V. Vermaas, R. Agarwal, J. Larkin, D. Poole, D. Santos-Martins,

L. Solis-Vasquez, A. Koch, S. Forli, O. Hernandez, J. C. Smith, and

A. Sedova, “Gpu-accelerated drug discovery with docking on the

summit supercomputer: Porting, optimization, and application to covid-

19 research,” in Proceedings of the 11th ACM International Conference
on Bioinformatics, Computational Biology and Health Informatics, ser.
BCB ’20. New York, NY, USA: Association for Computing Machinery,

2020. [Online]. Available: https://doi.org/10.1145/3388440.3412472
[19] J.-P. Lehr, C. Bischof, F. Dewald, H. Mantel, M. Norouzi, and

F. Wolf, “Tool-supported mini-app extraction to facilitate program

analysis and parallelization,” in Proceedings of the 50th International
Conference on Parallel Processing, ser. ICPP ’21. New York, NY,

USA: Association for Computing Machinery, 2021. [Online]. Available:

https://doi.org/10.1145/3472456.3472521
[20] W.-W. Liao, M. Asri, J. Ebler, D. Doerr, M. Haukness, G. Hickey, S. Lu,

J. K. Lucas, J. Monlong, H. J. Abel et al., “A draft human pangenome

reference,” Nature, vol. 617, no. 7960, pp. 312–324, 2023.
[21] L. López-Villellas, R. Langarita-Benítez, A. Badouh, V. Soria-

Pardos, Q. Aguado-Puig, G. López-Paradís, M. Doblas, J. Setoain,

C. Kim, M. Ono, A. Armejach, S. Marco-Sola, J. Alastruey-

Benedé, P. Ibáñez, and M. Moretó, “Genarchbench: A genomics

benchmark suite for arm hpc processors,” Future Generation
Computer Systems, vol. 157, pp. 313–329, 2024. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X24001250

[22] G. Manzini, “An analysis of the burrows—wheeler transform,” J.
ACM, vol. 48, no. 3, p. 407–430, may 2001. [Online]. Available:

https://doi.org/10.1145/382780.382782
[23] S. Matsuoka, J. Domke, M. Wahib, A. Drozd, A. A. Chien, R. Bair,

J. S. Vetter, and J. Shalf, “Preparing for the future—rethinking proxy

applications,” Computing in Science & Engineering, vol. 24, no. 2, pp.
85–90, 2022.

[24] D. Morneau, “Pan-genomes: moving beyond the reference,” Nat. Res,
2021.

[25] NCBI Resource Coordinators, “Genome reference consortium human

build 38,” Database, vol. 2016, p. baw106, 2016. [Online]. Available:
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.26/

[26] S. Nurk, S. Koren, A. Rhie, M. Rautiainen, A. V. Bzikadze, A. Mikheenko,

M. R. Vollger, N. Altemose, L. Uralsky, A. Gershman, S. Aganezov, S. J.

Hoyt, M. Diekhans, G. A. Logsdon, M. Alonge, S. E. Antonarakis,

M. Borchers, G. G. Bouffard, S. Y. Brooks, G. V. Caldas, N.-C. Chen,

H. Cheng, C.-S. Chin, W. Chow, L. G. de Lima, P. C. Dishuck, R. Durbin,

T. Dvorkina, I. T. Fiddes, G. Formenti, R. S. Fulton, A. Fungtammasan,

E. Garrison, P. G. S. Grady, T. A. Graves-Lindsay, I. M. Hall, N. F.

Hansen, G. A. Hartley, M. Haukness, K. Howe, M. W. Hunkapiller,

C. Jain, M. Jain, E. D. Jarvis, P. Kerpedjiev, M. Kirsche, M. Kolmogorov,

J. Korlach, M. Kremitzki, H. Li, V. V. Maduro, T. Marschall, A. M.

McCartney, J. McDaniel, D. E. Miller, J. C. Mullikin, E. W. Myers, N. D.

Olson, B. Paten, P. Peluso, P. A. Pevzner, D. Porubsky, T. Potapova,

E. I. Rogaev, J. A. Rosenfeld, S. L. Salzberg, V. A. Schneider, F. J.

Sedlazeck, K. Shafin, C. J. Shew, A. Shumate, Y. Sims, A. F. A.

Smit, D. C. Soto, I. Sović, J. M. Storer, A. Streets, B. A. Sullivan,

F. Thibaud-Nissen, J. Torrance, J. Wagner, B. P. Walenz, A. Wenger,

J. M. D. Wood, C. Xiao, S. M. Yan, A. C. Young, S. Zarate, U. Surti,

R. C. McCoy, M. Y. Dennis, I. A. Alexandrov, J. L. Gerton, R. J.

O’Neill, W. Timp, J. M. Zook, M. C. Schatz, E. E. Eichler, K. H.

Miga, and A. M. Phillippy, “The complete sequence of a human

genome,” Science, vol. 376, no. 6588, pp. 44–53, 2022. [Online]. Available:
https://www.science.org/doi/abs/10.1126/science.abj6987

[27] I. G. S. Resource, “Structural variation data collection,”

https://www.internationalgenome.org/data-portal/data-collection/
structural-variation, 2024.

[28] D. F. Richards, O. Aziz, J. Cook, H. Finkel, B. Homerding, T. Judeman,

P. McCorquodale, T. Mintz, and S. Moore, “Quantitative performance

assessment of proxy apps and parents,” Lawrence Livermore National

Lab.(LLNL), Livermore, CA (United States . . . , Tech. Rep., 2018.

[29] S. Secomandi, G. R. Gallo, R. Rossi, C. Rodríguez Fernandes, E. D. Jarvis,

A. Bonisoli-Alquati, L. Gianfranceschi, and G. Formenti, “Pangenome

graphs and their applications in biodiversity genomics,” Nature Genetics,
vol. 57, no. 1, pp. 13–26, 2025.

[30] J. Sirén and B. Paten, “Gbz file format for pangenome graphs,”

Bioinformatics, vol. 38, no. 22, pp. 5012–5018, 2022.
[31] J. Sirén, J. Monlong, X. Chang, A. M. Novak, J. M. Eizenga, C. Markello,

J. A. Sibbesen, G. Hickey, P.-C. Chang, A. Carroll, N. Gupta,

S. Gabriel, T. W. Blackwell, A. Ratan, K. D. Taylor, S. S. Rich, J. I.

Rotter, D. Haussler, E. Garrison, and B. Paten, “Pangenomics enables

genotyping of known structural variants in 5202 diverse genomes,”

Science, vol. 374, no. 6574, p. abg8871, 2021. [Online]. Available:

https://www.science.org/doi/abs/10.1126/science.abg8871
[32] M. Thavappiragasam, A. Scheinberg, W. Elwasif, O. Hernandez, and

A. Sedova, “Performance portability of molecular docking miniapp

on leadership computing platforms,” in 2020 IEEE/ACM International
Workshop on Performance, Portability and Productivity in HPC (P3HPC),
2020, pp. 36–44.

[33] B. Wajid and E. Serpedin, “Do it yourself guide to genome

assembly,” Briefings in Functional Genomics, vol. 15, no. 1,

pp. 1–9, Nov. 2014, _eprint: https://academic.oup.com/bfg/article-

pdf/15/1/1/27029244/elu042.pdf. [Online]. Available: https://doi.org/
10.1093/bfgp/elu042

[34] X. Wu, V. Taylor, and Z. Lan, “Performance and energy improvement

of ecp proxy app sw4lite under various workloads,” in 2021 IEEE/ACM
Workshop on Memory Centric High Performance Computing (MCHPC),
2021, pp. 17–24.

[35] H. Zheng, C. Kingsford, and G. Marçais, “Improved design

and analysis of practical minimizers,” Bioinformatics, vol. 36,

no. Supplement_1, pp. i119–i127, 07 2020. [Online]. Available:

https://doi.org/10.1093/bioinformatics/btaa472

12

A. Artifact Appendix
A.1 Abstract
This artifact contains the source code and documentation for mini-
Giraffe. We demonstrate how to reproduce the validation of mini-
Giraffe, the parallel scalability analysis of the proxy, and the auto-
tuning experiments. More specifically, we address the reproducibil-
ity of the results discussed in Figures 5 and 7, as well as Tables 5,
7, and 8.

A.2 Artifact check-list (meta-information)
• Program: miniGiraffe, Python, Rscript, Bash

• Compilation: gcc, CMake, Make

• Run-time environment: Ubuntu 22.04 or newest

• Metrics: Makespan, Hardware Counters

• Output: .csv files from the application, .png from analysis scripts

• How much disk space required (approximately)?: 40GB for one
input set

• How much time is needed to prepare workflow (approximately)?: 1
hour

• How much time is needed to complete experiments (approxi-
mately)?: 3-24 hours (depending on the dataset)

• Publicly available?: Yes

• Code licenses (if publicly available)?: MIT

• Archived (provide DOI)?: 10.5281/zenodo.16930194

A.3 Description
A.3.1 How to access
miniGiraffe artifact is available at Zenodo1 and GitHub2. All scripts
for reproducibility and instructions for environment setup can be
found there. The source code from miniGiraffe is available at
GitHub as well3.

A.3.2 Hardware dependencies
miniGiraffe can run on any hardware. To obtain results as close as
possible to those presented in this publication, we recommend that
users use hardware platforms with similar characteristics given in
Table II. The smallest input set provided in this paper needs 32GB
of RAM.

A.3.3 Software dependencies
The artifact requires: Python3, CMake, R-base (R language),
Perf, libcurl, libssl, libfontconfig, libharfbuzz,
libpng, libtiff, libjpeg (all libs are dependencies of the R-
tidyverse library). miniGiraffe only requires CMake.

To execute the experiments, the following Python libraries are
required: pyDOE3, requests, pandas. The data analysis and
plot require R tidyverse package.

A.3.4 Data sets
Input set A-human uses the 1000GPlons pangenome created by the
VG team using variants from the 1000 Genome Project. It maps
a single-end read input from the NA19239 individual. Input set
B-yeast also explores the single-end workflow by using a yeast
pangenome based on a full set of yeast samples, available on the
UCSC Genome Browser. Input set C-HPRC uses the latest ver-
sion of the human pangenome graph built using variants from the

1 https://doi.org/10.5281/zenodo.16930194
2 https://github.com/jessdagostini/iiswc-minigiraffe-ae
3 https://github.com/jessdagostini/miniGiraffe

Genome Reference Consortium Human Build 38. The input set D-
HPRC utilizes the latest pangenome, built from the complete hu-
man genome sequence CHM13. For both paired-end input sets,
data comes from different fragments of the genome sequence of
the NA24385 individual’s son.

A.4 Installation
A.4.1 Installing dependencies
Download/clone the artifact repository 4. Install all software depen-
dencies (listed above) and clone miniGiraffe’s repository with:

git clone --recursive \
https://github.com/jessdagostini/miniGiraffe.git

Important to clone miniGiraffe at your home directory since
the experiments scripts will consider $HOME/miniGiraffe as the
default path to find miniGiraffe’s executables.

Those using Ubuntu/Debian OS can navigate to the artifact
repository and run:

bash config-env.sh

This script will install all necessary dependencies and clone
miniGiraffe’s repository. It is important to note that for those us-
ing a Linux-based OS, to collect perf metrics, the user needs
to run sudo sysctl -w kernel.perf_event_paranoid=-1 to
enable collection. This step is performed by the config-env.sh
script for users of Ubuntu/Debian.

After installing all required packages, run the following script
to install Python and R-script dependencies:

bash install-python-and-R-deps.sh.
Windows users can refer to this file for the necessary packages.

A.4.2 Compiling miniGiraffe
cd miniGiraffe
bash install-deps.sh
make miniGiraffe
make lower-input
source set-env.sh
./miniGiraffe

A.5 Experiment workflow
A.5.1 Reproducing miniGiraffe’s hardware metrics
In this experiment, we collect hardware counters from the mini-
Giraffe’s execution, highlighting the miniGiraffe’s ease of use
for collecting critical hardware metrics. In the paper, we also
use these metrics alongside Giraffe’s hardware counter metrics
to validate the significance of our proxy compared to the par-
ent application. Due to the significant complexity of building
and modifying the complete VG Giraffe application to re-collect
this data, we provide the original hardware metrics (located at:
data-from-paper/intelxeonplatinum8260cpu@240ghz/1)
and the specifications of the machine used for that initial collec-
tion (described at the README.md file in the artifact repository).
Users running miniGiraffe on a machine with similar characteris-
tics can use this provided data to reproduce the validation experi-
ment closely.

To collect miniGiraffe’s hardware metrics, run:
python3 experiments/hw-counters-pipeline.py.
This will collect the six hardware metrics from miniGiraffe and

store them at results/. To parse the results and perform the anal-
ysis, run Rscript analysis/table5-with-new-results.R.

4 https://doi.org/10.5281/zenodo.16930194

13

A.5.2 Reproducing scalability analysis
In this experiment, we will reproduce the scalability analysis
made with miniGiraffe and presented in Figure 5. Navigate to
experiments/ and execute python3 scalability-pipeline.py.
This script will automatically download the A-Human (1000GP)
input set used in the paper’s experiments. It will run a set of differ-
ent executions with varying numbers of threads, according to the
machine’s available threads.

It is also possible to run different input sets and collect their
scalability performance. To do that, simply run:

python3 experiments/scalability-pipeline.py \
<path/to/sequence-seeds.bin> \
<path/to/giraffe-gbz> \
<input-set-name>

miniGiraffe expects two input files: a .bin file with the seeds
collected from Giraffe, and the pangenome graph in .gbz/.gbwt
format. Given the size of the other input sets, they are not avail-
able for download in the direct miniGiraffe format. We provide a
step-by-step guide on how to generate new input sets at the “Gen-
erate new input sets” description on the README.md of both mini-
Giraffe’s source code and artifact repositories.

To visualize/analyze the results, after finishing the execu-
tion, execute Rscript figure5-with-new-results.R. This R-
script will read the output data and plot a speedup graph similar to
Figure 5. This script will generate the plot file with the scalability
results and a table with the best makespan found for each input set.
If other input sets are run, this script will automatically parse them
and include them in the plot.

A.5.3 Reproducing auto-tuning experiments
In this experiment, we investigate the effect of various parameters
on the performance of the mapping process. The goal is to find
the best set of parameters for each case, and mainly to demonstrate
how this can impact performance on this type of operation. Figure 7
presents this tuning for four different machines using four different
input sets.

To reproduce the experiment, navigate to experiments/ and
execute python3 tuning-pipeline.py. It will create a sampled
version of the original input set given and then combine different
batch sizes, initial GBWTCache capacities, and schedulers exhaus-
tively, running with all available threads on the system. This facto-
rial set of experiments will then be launched by the script, collect-
ing data and storing them in the results/ folder.

It is also possible to run different input sets and collect their
tuning metrics:

python3 experiments/tuning-pipeline.py \
<path/to/sequence-seeds.bin> \
<path/to/giraffe-gbz> <input-set-name>

To parse/visualize/analyze the results, after finishing the exper-
iment, execute Rscript figure7-with-new-results.R. This
script will generate a plot with the best setting comparison and also
a table identifying which values were used in each parameter. If this
is run with multiple input sets, the plot will automatically include
their results.

A.6 Evaluation and expected results
Upon successful completion of the experiments, users should be
able to 1) Obtain miniGiraffe’s hardware counters to understand
possible bottlenecks this mapping operation can present on current
hardware (and, if running on a similar hardware where Giraffe’s
hardware counters were collected, validate the fidelity of miniGi-
raffe behavior to its parent application); 2) Observe the scalability

of the mapping operation on pangenomes using the selected hard-
ware and understand its tradeoffs, and the effect that different input
sets can also present; 3) Evaluate the impact of tuning parameters
when running this application on different hardware, and achieve
performance gains in the application’s execution. This experiment
aims to demonstrate how miniGiraffe eases the testing of different
strategies, parameters, and tuning for this sequence-to-pangenome
mapping workload.

A.7 Notes
Users can also reproduce the analysis performed with the original
datasets collected during the experiments for this paper. Data and
scripts to re-plot Figures 5 and 7 and Tables 5, 7, and 8 are available
at data-from-paper/.

A.8 Methodology
Submission, reviewing, and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-and-badging-current

• https://cTuning.org/ae

14

