
RepCut: Superlinear Parallel RTL Simulation with
Replication-Aided Partitioning

Haoyuan Wang
University of California, Santa Cruz

Santa Cruz, CA 95064, USA
hwang208@ucsc.edu

Scott Beamer
University of California, Santa Cruz

Santa Cruz, CA 95064, USA
sbeamer@ucsc.edu

ABSTRACT
Register transfer level (RTL) simulation is an invaluable tool for
developing, debugging, verifying, and validating hardware designs.
Despite the parallel nature of hardware, existing parallel RTL simu-
lators yield speedups unattractive for practical application due to
high communication and synchronization costs incurred by typical
circuit topologies.

We present RepCut, a novel parallel RTL simulationmethodology.
RepCut is enabled by our replication-aided partitioning approach
that cuts the circuit into balanced partitions with small overlaps.
By replicating the overlaps, RepCut eliminates problematic data
dependences between partitions and significantly reduces expen-
sive synchronization overhead between parallel threads. RepCut
outperforms state-of-the-art simulators, and when simulating a
large system-on-chip with multiple out-of-order cores, it achieves
a 27.10× speedup (superlinear) using 24 threads with only a 3.81%
replication cost.

CCS CONCEPTS
• Hardware → Hardware description languages and compila-
tion; • Computing methodologies→Massively parallel and
high-performance simulations.

KEYWORDS
RTL simulation, parallel simulation, full-cycle simulation, replication-
aided partitioning

ACM Reference Format:
Haoyuan Wang and Scott Beamer. 2023. RepCut: Superlinear Parallel RTL
Simulation with Replication-Aided Partitioning. In Proceedings of the 28th
ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3 (ASPLOS ’23), March 25–29,
2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3582016.3582034

1 INTRODUCTION
The time-consuming nature of RTL simulation is a burdensome
problem for large-scale system-on-chip development, especially for
verification signoff. Developers need to create multidimensional
tests in RTL simulation with various input stimuli to cover use-case

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9918-0/23/03.
https://doi.org/10.1145/3582016.3582034

1

2

3

4 5

(a) Verilator Partitioning

1

2 3 5

4

Th
re
ad

s

(b) Verilator Schedule

1 2

(c) RepCut Partitioning

1

2Th
re
ad

s

(d) RepCut Schedule

Figure 1: Comparison of partitioning and scheduling a design
by leading prior work (Verilator) and this work (RepCut).
RepCut reduces synchronization by removing inter-partition
dependences with replication.

scenarios for design space exploration. Unfortunately, that slow
speed of RTL simulation can often be the bottleneck [31], particu-
larly when the complexity of an IC design reaches the point where
the number of tests necessary to achieve full coverage cannot be
completed within the development schedule. Despite the paral-
lelism intrinsic to digital ICs, parallelizing individual simulations
in practice has proven challenging for decades [6]. Available offer-
ings typically provide sub-linear speedups, which reduce overall
simulation throughput.

Distributing work among threads is a crucial aspect of paral-
lelization efforts, since it impacts both load balance and inter-thread
synchronization. Ideally, RTL simulation should execute in a sin-
gle uninterrupted phase per simulated cycle. Accomplishing this
requires partitioning the design such that each thread’s work can
be executed without dependences during that simulated cycle. Un-
fortunately, partitioning the hardware design in such a manner is
practically impossible due to traits common to circuit topologies.

In this work, we propose a method that uses a trivial amount
of replication to break intra-cycle dependences between partitions
to enable such an efficient partitioning. This results in partitions
that can be executed in parallel which generally achieve much
higher utilization because they only need to synchronize once per
simulated cycle (Figure 1). In addition to extractingmore parallelism
than prior approaches, we also create accurate work estimates
to improve load balance across threads to achieve even higher
speedups.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

572

https://doi.org/10.1145/3582016.3582034
https://doi.org/10.1145/3582016.3582034
https://doi.org/10.1145/3582016.3582034
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://creativecommons.org/licenses/by/4.0/

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Haoyuan Wang and Scott Beamer

Our approach successfully reduces the amount of synchroniza-
tion, but for a sufficiently high degree of parallelism, synchroniza-
tion can still limit performance [34, 37]. Thus, we anticipate there
will be practical limits to how fast a modestly-sized design’s sim-
ulation can be parallelized (strong scaling), and as a consequence,
parallelization will be most effective on increasingly larger designs
(weak scaling).

A surprise benefit of using a statically scheduled parallelization
for this workload is that superlinear speedups are possible. Us-
ing additional host cores shrinks the amount of work assigned to
each core such that each core performs better due to improved
locality (caches and branch prediction). Our approach can bene-
fit from nearly doubled instruction throughput as a result of this
phenomenon.

We present RepCut, a parallel RTL simulator built on our novel
partitioning approach, and we contribute the following:

• A parallel RTL simulation strategy that reduces synchroniza-
tion between threads which increases scalability.

• Our partitioning method which makes use of a proxy prob-
lem, a hypergraph partioner, and our simulation effort model
to generate independent and nearly balanced partitions.

• Evaluation including analysis with hardware performance
counters in which RepCut achieves up to a 27.10× speedup
with 24 cores and it outperforms the state-of-the-art parallel
simulator Verilator with PGO enabled by up to 3.09×.

• We release RepCut as open-source with a BSD license.1

2 HARDWARE SIMULATION BACKGROUND
RTL simulators can be broadly classified as either event-driven [2,
16, 28–30, 46, 47] or full-cycle [10, 43]. Event-driven simulators
propagate activity (value changes) through the hardware design
as events. They can efficiently model arbitrary delays by using
a priority queue to determine which event to simulate next. For
cycle-accurate simulation, this timing precision is unnecessary, and
the effort to track and prioritize events adds substantial overhead.
A full-cycle simulator removes that overhead by using a static (pre-
computed) schedule. It compiles the design into a custom program
that simulates only that design. Full-cycle simulators are termed
oblivious, since they simulate the entirety of the design every cycle
independent of the actual amount of activity. In practice, full-cycle
simulation is much faster than fully event-driven, even though
real-world designs often have a fair amount of inactivity.

Full-cycle simulators have uncommon workload characteristics
that can stress the host processor in unusual ways [9]. The code
within a full-cycle simulator is nearly straight-line (activity obliv-
ious), as it simulates the entirety of the design every cycle. This
results in extremely consistent execution times for each cycle. For
small designs, this commonly achieves reasonably high instruction
throughputs [35]. However, as the size of the design grows, so too
does the size of the simulator program. With a sufficiently large
design, the host processor’s frontend can become overwhelmed.
Although a large fraction of the program is re-executed every cycle,
the reuse interval can become too large for the instruction cache
and branch predictors to exploit. Surprisingly, the data working
sets tend to be modest and enjoy reasonable locality. Even when
1GitHub: https://github.com/ucsc-vama/essent/tree/repcut

full-cycle simulators are frontend-bound due to the size of a large
design, they are still faster than event-driven.

Verilator is a high-performance open-source Verilog simulator
that uses a full-cycle approach and includes a number of optimiza-
tions [43, 44]. It is commonly used in industry and academia due to
its speed and non-existent licensing cost. We use it in this work as
a high-performance baseline, and in the next section, we analyze
its parallelization approach.

ESSENT is an open-source RTL simulator whose research con-
tribution is exploiting low-activity factors to avoid unnecessary
computation [10, 11]. We use ESSENT to prototype our approach
due to its small modular codebase that eases our development. We
disable its activity optimizations since they are orthogonal to this
work. An unoptimized ESSENT-generated simulator is full cycle.
ESSENT benefits greatly from being built on top of the mature
FIRRTL [23] ecosystem.

3 PARALLEL SIMULATION CHALLENGES
Partitioning a hardware design across threads for parallel simula-
tion is a daunting task. Ideally, partitions will be perfectly balanced
and communicate only once per simulated cycle. Doing so will
reduce the time threads spend idling awaiting each other. Unfor-
tunately, such a partitioning is typically impossible for real-world
designs. Partitioning the circuit along boundaries that only need
to communicate once a cycle (e.g. registers) results in wildly im-
balanced partitions. Thus, parallel simulators need to cope with
intra-cycle communication to balance work across partitions. Intra-
cycle communication requires more synchronization, as there must
also be a method to indicate when a dependence is ready (e.g. con-
dition variable).

The approach taken by Verilator and other parallel RTL simula-
tors is to intentionally excessively partition the design into far more
partitions than threads [38]. Having many partitions increases par-
allelism and allows for partitions to execute completely instead of
needing to pause midway for data dependences. With many parti-
tions available, Verilator statically allocates partitions to threads
to balance the workload. Since these partitions have intra-cycle
data dependences, Verilator estimates the execution time of the
partitions and schedules them so dependences complete before
they are needed in order to reduce thread waiting. This method
leads to worthwhile speedups and is a significant improvement
over prior work. It is worth appreciating that this parallelization is
done in an automated fashion by Verilator and it does not require
user parallelization, partitioning, or annotations [39].

We profile Verilator (Figure 2a) and observe despite obtaining
parallel speedups, many threads spend a significant amount of time
idle. Idle threads are caused by waiting on data dependences, but
there are a number of root causes for why those dependences are
produced late:

• Some partitions are far too large for a balanced schedule
because Verilator’s partitioner does not limit partition sizes.

• Other partitions are excessively small, and although they can
break up data dependences, they are not worth the overhead.

• Inaccurate execution time predictions prevent the scheduler
from being able to ensure data dependences are ready before

573

https://github.com/ucsc-vama/essent/tree/repcut

RepCut: Superlinear Parallel RTL Simulation with Replication-Aided Partitioning ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

0 3.5 7.0 10.5 14.0

Th
re

ad
s

1
Co

re

Rocket Chip

0 5.1 10.2 15.4 20.5

Small BOOM

0 7.6 15.2 22.8 30.5

Large BOOM

0 9.1 18.1 27.2 36.3

Mega BOOM

0 4.0 8.1 12.1 16.2

Th
re

ad
s

2
Co

re
s

0 6.3 12.5 18.8 25.0 0 9.1 18.1 27.2 36.3 0 15.8 31.6 47.4 63.1

0 5.4 10.7 16.1 21.4
Time (μs)

Th
re

ad
s

4
Co

re
s

0 8.2 16.5 24.7 33.0
Time (μs)

Idle (Predicted) Idle (Unpredicted) Working (Unpredicted) Working (Predicted)

0 19.4 38.9 58.3 77.8
Time (μs)

0 33.5 66.9 100.4 133.8
Time (μs)

(a) Verilator Thread Profile

0 1.2 2.4 3.6 4.8

Th
re
ad

s
1

Co
re

Rocket Chip

0 1.5 3.1 4.6 6.2

Small BOOM

0 2.8 5.7 8.5 11.4

Large BOOM

0 4.1 8.1 12.2 16.2

Mega BOOM

0 1.3 2.5 3.8 5.0

Th
re
ad

s
2

Co
re

s

0 1.8 3.6 5.4 7.2 0 4.2 8.5 12.7 17.0 0 7.0 14.1 21.1 28.1

0 1.4 2.8 4.2 5.6
Time (μs)

Th
re
ad

s
4

Co
re

s

0 2.7 5.3 8.0 10.7
Time (μs)

Idle (Predicted) Idle (Unpredicted) Working (Unpredicted) Working (Predicted)

0 8.6 17.2 25.7 34.3
Time (μs)

0 19.3 38.6 57.9 77.2
Time (μs)

(b) RepCut Thread Profile

Figure 2: Thread activity for Verilator and RepCut using 18 threads (profiling method in Section 6.5) across all designs (Table 1).
RepCut’s reduced synchronization keeps threads busier (more filled in) and delivers an overall speedup (shorter cycle time).
Includes each simulator’s thread’s execution time predictions, but RepCut does not predict the global update phase at the end.

their dependents need them, which cause “bubbles” dur-
ing execution (Figure 2a). This cost can be reduced by en-
abling Verilator’s Profile-Guided Optimization (PGO), which
collects partition execution times during execution and re-
compiles. We evaluate Verilator PGO in Section 6.

• Having intra-cycle data dependences in general runs the risk
that there could be a stall for anything less than a near-
perfect schedule.

Due to the lack of execution time variance between cycles, stati-
cally partitioning work is a natural optimization to avoid dynamic
scheduling overheads. However, dynamic scheduling could bring
practical advantages. First, it could allow for the number of threads
used to be chosen after compilation time, and it could even be
changed during execution. Second, it could load balance dynam-
ically, which would obviate the need to have accurate work pre-
dictions. We suspect a parallel commercial simulator uses dynamic
scheduling since according to its documentation, it allows for the

number of threads to be set after compilation. Unfortunately, we are
unable to access the parallel feature with the commercial simulator.
Other experiments report Verilator outperforming the commercial
simulator, both in serial or parallel [1, 8, 44].

A statically-scheduled simulator running at full utilization should
be able to outperform a dynamically-scheduled simulator. Not only
does static scheduling avoid the overhead of scheduling during
simulation, but it will also have better thread locality for the caches.
Changing the location where a task executes on different cycles
reduces its locality, but pinning a task to the same location for better
locality loses the advantage of dynamic scheduling.

From our analysis, we observe that efficient parallel RTL simu-
lation will require statically-allocated partitions that are balanced
and only need to communicate once per simulated cycle (Figure 1).
Achieving such a balance with a single statically-allocated partition
per thread will require accurate execution time predictions. Addi-
tionally, keeping the communication to a single round will require
innovation to outfox limitations from the design topology.

574

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Haoyuan Wang and Scott Beamer

CB DA E

(a) Traverse Cones

CB DA E

(b) Divide Clusters

A

B
C

D

E

Hypergraph
Partition

(c) Build & Partition Hypergraph

CB DA E

(d) Acquire Partitions

Figure 3: Replication-aided Partitioning Steps – Starting from sink nodes, crawl upwards to identify cones (a). Cluster nodes
that belong to same set of cones (b). After building and partitioning the hypergraph (c), use replication (shown in dark red) to
make partitions independent (d). Does not show the source nodes representing register reads since they are not partitioned.

4 REPLICATION-AIDED GRAPH
PARTITIONING

Our novel design partitioning approach achieves our goals of bal-
anced partitions that only require a single round of communication
per simulated cycle. To overcome the topological challenges, our
insight is to replicate a small portion of the design to break the de-
pendences. In this section, we describe how we prepare the design,
create a proxy problem for the partitioner, and how to accurately
estimate simulation work to better balance our partitions.

To leverage existing abstractions, terminology, and algorithms,
we view a hardware design as a directed graph. Each node repre-
sents a component (e.g. a logic gate, adder, multiplexor, or register)
and each edge represents a wire connecting components.

4.1 Exploiting Chronological Independence of
Registers and Memories

Before attempting to partition the design, we first split registers and
memories into two nodes in the graph. Registers are an essential
component in synchronous digital designs as they not only store
data, but they also regulate the flow of data updates in a circuit.
Every cycle, data is read from registers, fed through combinational
logic, and the results are written back to registers. We represent
each register with two nodes in the graph: one for reading the
register (a source) and one for writing the register (a sink). This
simplifies scheduling the simulation to have the correct data flow,
e.g. no read should be able to see the result of a write in the same
cycle. However, our main motivation for splitting registers and
memories is to significantly reduce the graph’s connectivity.

Partitioning the design purely along register boundaries is de-
sirable, since partitions would only need to communicate once
per simulated cycle. Unfortunately, our experiments find simply
splitting registers generally does not yield balanced disconnected
components in the graph. It typically creates a gigantic component
along with a few tiny fragments, especially in complex designs. Fur-
ther analyses reveal that typically only a handful of paths between
large components make them connected. Fortunately, splitting reg-
isters creates a considerable amount of source and sink nodes in
the graph, which significantly benefits the next step (partitioning).
Splitting registers also guarantees that no internal state exists in
the graph except at source and sink vertices, which makes each par-
tition a pure function, which eases memory-related optimizations.

4.2 Generating the Intersection Hypergraph
We obviate edges between partitions that do not pass through
registers by using replication to “cut” them, which also yields the
name RepCut. Specifically, we only replicate combinational logic
nodes (computation), since we have shared memory and thus have
no need to copy data. Our approach succeeds because the cost of
recomputing a small portion of the design is less than the time spent
waiting for inter-thread synchronization. Prior work has considered
using replication to avoid computation (Section 7), however, our
approach to determine what to replicate and how to minimize that
replication is novel.

We translate the novel problem of partitioning with replication
into a proxy problem an existing partitioner can solve. In particular,
we create a hypergraph that uses edge weights to convey the repli-
cation costs and node weights to convey the simulation costs. This
proxy problem encourages the partitioner to minimize the weight
of the edges cut (which minimizes replication) while also balancing
partitions by node weight (which balances simulation time).

1 def TraverseCone(g, seed , cone_id):
2 fringe = g.vtxs[seed]. predecessors ()
3 while fringe.notEmpty ():
4 vtx = fringe.pop()
5 if not visited(vtx):
6 g.vtxs[vtx]. cone_ids.append(cone_id)
7 fringe.extend(g.vtxs[vtx]. predecessors)
8
9 def TraverseAllCones(g): # g: Circuit DAG
10 seeds = g.sink_vertices ()
11 for seed in seeds:
12 TraverseCone(g, seed , new_id ())

Algorithm 1: Traverse Cones

To build our proxy problem, we use hypergraphs which general-
ize the graph abstraction. While a graph uses edges to represent
connections between pairs of nodes, a hypergraph uses hyperedges
to represent connections between sets of nodes. Conceptually, a
hypergraph is a natural fit for a hardware design graph (netlist)
as a single hyperedge can represent a wire driven by one com-
ponent that broadcasts to many readers (net). A hypergraph can
be losslessly transformed into a bipartite graph by replacing each
hyperedge with a node and the necessary pairwise connections.
However, keeping hyperedges intact prevents the partitioner from
cutting a hyperedge’s constituent edges independently.

We build the hypergraph for our proxy problem over multiple
steps. We group vertices based on the topology to reduce the size of

575

RepCut: Superlinear Parallel RTL Simulation with Replication-Aided Partitioning ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

the graph. First, for each vertex, we identify which cones it belongs
to (Figure 3a). The cone of a vertex 𝑣 is the set of its ancestors and
itself, i.e. the vertices that can determine the value of 𝑣 [40]. For
each sink vertex, we crawl bottom-up until reaching source vertices
and annotate all of its ancestors reached with the cone identifier
(Algorithm 1). A non-sink vertex can belong to multiple cones.

We group vertices into a cluster if they belong to the same set
of cones (Figure 3b). We then collapse each cluster into a single
node. The resulting cluster graph greatly reduces the size of the
design while grouping vertices together if they can impact the same
sink vertices. A vertex in the original graph belongs to exactly one
cluster. If a cluster contains a sink vertex from the original graph, it
must be a sink vertex in the cluster graph. Otherwise, if the cluster
has descendants (i.e. not a sink), it would contradict the sink in the
original graph being descendant-free.

1 def BuildHypergraph(clusters):
2 hg = HyperGraph ()
3 for cluster in clusters:
4 if is_sink_cluster(cluster):
5 weight = hg_vtx_weight(cluster)
6 hg.addVertex(cluster.cid , weight)
7 else:
8 weight = hg_edge_weight(cluster)
9 heVtx = cluster.cone_ids
10 hg.addEdge(cluster.cid , weight , heVtx)
11 return hg

Algorithm 2: Build Hypergraph

The final transformation (Algorithm 2) converts the cluster graph
into a intersection hypergraph which captures the replication cost
between overlapping cones. The intersection hypergraph 𝐻 =

(𝑉 , 𝐸,𝜔𝑣, 𝜔𝑒) is weighted and undirected. The vertices (𝑉) represent
sink clusters and the hyperedges (𝐸) represent non-sink clusters,
which connect to all of their descendant cones (Figure 3c). We de-
note the set of hyperedges connected to a vertex 𝑣 as Γ(𝑣), and the
number of endpoints (pin count) of a hyperedge 𝑒 as |𝑒 |. We assign
weights to vertices (𝜔𝑣 (𝑣)) and hyperedges (𝜔𝑒 (𝑒)) with Formula 1.
Each node in the cluster graph is given a weight [based on its
predicted simulation time (next subsection).

𝜔𝑣 (𝑣) = [(𝑣) +
∑︁

𝑒∈Γ (𝑣)

[(𝑒)
|𝑒 | 𝜔𝑒 (𝑒) = [(𝑒) (1)

The weight of a hyperedge is the weight of the cluster node
it represents from the cluster graph. The weight of a vertex is
the weight of itself in the cluster graph as well as the sum of its
proportional share of all of its ancestors. A hyperedge cut implies
its corresponding cluster needs to be replicated across different
partitions.

Partitioning the intersection hypergraph creates a useful proxy
problem, but it does not perfectly capture the weight of the re-
sulting partitions. When we assign vertex weights (𝜔𝑣 (𝑣)) before
partitioning, we do not yet know how hyperedges will be cut. Thus,
we distribute their weight evenly to their descendants. This assump-
tion introduces minor error which we analyze in the evaluation
(Section 6.6).

Graph partitioning is known to be NP-hard [5, 13, 26, 27, 45], and
hypergraph partitioning is no exception. Fortunately, hypergraph
partitioning is a well-studied problem, and well-tuned heuristic-
driven frameworks can produce good results in practical amounts

of time [14, 25, 42]. In this work we use KaHyPar [42] as our hy-
pergraph partitioner because of its speed, high-quality results, and
support for our objective 𝑐𝑜𝑠𝑡 function (Formula 2).

4.3 Simulation Cost Model (Node Weights)
Accurately predicting the simulation time of a partition is essen-
tial for improving load balance with a static partitioning. Verilator
assigns a weight to each Verilog AST node and accumulates them
for each task [43], but in practice the predictions can be inaccurate
(Figure 2). Compiler optimizations may confound such simple mod-
els, and inaccurate predictions worsen load balance and ultimately
speedup.

RepCut predicts cluster simulation times with FIRRTL’s low-
level IR [23] instead of at the Verilog AST level. This enhancement
brings multiple benefits that help improve prediction accuracy.
First, low-level FIRRTL is closer to the generated C++ code, allow-
ing us to more easily consider compiler optimizations like constant
propagation. Second, low-level FIRRTL provides considerable in-
formation such as the IR type, operation type, reference type, and
data width. The additional information makes accurate prediction
feasible while bypassing interference from high-level language con-
structs. A crucial advantage is the ability to determine if a reference
is connected to a wire or a register. We assume wire references are
zero-cost since the C++ compiler is capable of optimizing circuit
references.

RepCut’s simulation time predictor is a simple linear model. We
build the weights for our model based on a least squares linear
regression on the aforementioned attributes and simulation times
for a variety of circuit partitions.

4.4 Using the Hypergraph Partitioning Result
to Guide Replication

After partitioning, cones in the same partition2 remain connected,
and clusters required by those cones can be reconstructed to satisfy
data dependences (Figure 3d).

We formulate the overall replication cost where 𝑐𝑢𝑡 denotes the
set of all hyperedges cut by the partitioning:

𝑐𝑜𝑠𝑡 =
∑︁

𝑒∈𝑐𝑢𝑡
(|𝑒 | − 1)𝜔𝑒 (𝑒) (2)

We use replication to break dependences, but it can create ad-
ditional computational overhead and even deteriorate partition
balance. In the worst case, the replication burden is imposed solely
on a single partition, which would cause the imbalance introduced
by replication to be the 𝑐𝑜𝑠𝑡 function. In practice, the replication is
more disperse and less unbalanced.

5 PARALLELIZATION APPROACH
With our balanced and independent partitions available, we turn
our attention to the overall parallel execution strategy as well as its
memory layout. Our partitioning approach greatly reduces inter-
thread communication and synchronization, which in turn makes
these factors crucial to solve to scale to higher parallel speedups.
2A typical definition for a partitioning requires the partitions to be disjoint. We argue
our partitions do not violate this property, because after the necessary replication, any
vertex is in only one partition.

576

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Haoyuan Wang and Scott Beamer

… …

Thread 0

Evaluation Global Update

Thread n

Ev
al

ua
tio

n
Ba

rri
er

G
lo

ba
l U

pd
at

e
Ba

rri
er

G
lo

ba
l U

pd
at

e
Ba

rri
er

 (L
as

t C
yc

le
)

…

Global

Reg

Mem

Reg

Local

Reg

Mem

Local

Reg

Mem

Local

Reg

Mem

Local

Reg

Mem

…

Global

Reg

Mem

Reg

Time

Figure 4: Execution Phases – In the Evaluation Phase, threads
access global values to compute the new values in local (pri-
vate) memory. After a barrier, threads copy their updated
local values to global data in the Global Update Phase. A sec-
ond barrier completes the cycle and the next cycle can start.

5.1 Parallelizing with a Single Update per Cycle
During RTL simulation, the only data saved from one cycle to the
next are the values of the state elements (registers and memories).
Thus, to simulate a cycle is to use the current state to compute the
next state. We store these state elements in a shared global data
structure to ease access. Our partitioning scheme ensures there are
no dependences between partitions during a cycle, but there are
data dependences between partitions between cycles (e.g. registers
on boundaries). To regulate these data exchanges, we simulate each
cycle with two barrier-separated phases: Evaluation and Global
Update:

• Evaluation Phase: Each thread reads registers and memory
values from the global copy, evaluates logic in the partition,
and writes registers into a local copy. It buffers (delays) mem-
ory write requests.

• Evaluation Barrier: Wait for all threads to complete their
evaluation stage.

• Global Update Phase: Each thread overwrites the global
copy using its local copy, and performs deferred memory
write requests.

• Global Update Barrier: Wait for all threads to complete
updates to global data before moving onto the next cycle.

During the evaluation phase, each thread records the new values
of registers in its partition in thread-private memory (Figure 4).
Keeping these values thread private prevents other threads from
seeing new values prematurely or forcing threads to wait on each
other within a cycle. To speed up the global update phase, we
arrange the registers in the host’s memory such that each thread
controls a single contiguous portion. Each thread’s private registers
use the same layout, so a single std::memcpy (typically vectorized)
can speedily copy the values from thread private to shared memory
during the global update phase.

Since simulated memories may have much larger capacities than
registers, we treat them differently. We simulate each memory with
a single shared representation. During the evaluation phase, we
record the details of the memory writes and delay updating global
memory until the global update phase. The buffering prevents a
read from prematurely seeing the value of a write.

5.2 Optimizing the Memory Layout to Avoid
False Sharing

Register Memory

Write by Thread 0 Write by Thread 1 … Write by Thread n

Padding

Read by Thread 0 Read by Thread 1 … Read by Thread n

Write Segment

Read Group

Figure 5: Memory Layout – Register locations in memory
are chosen to improve atomicity and locality. Each thread
updates a single contiguous portion of memory and padding
is added to align it before the next thread. Within a region
a thread writes, registers are grouped by which thread will
read them. For a simulated memory, there is only one copy
and updates to it are deferred until the Global Update Phase.

We perform additional memory layout optimizations beyond en-
suring all of a thread’s registers are adjacent in the global copy (Fig-
ure 5). Within each thread’s segment, registers are further sorted by
readers (threads) and are topologically ordered within each group.
Since ESSENT emits statements in a topological order, sorting reg-
isters this way effectively increases spatial locality.

False sharing can be an extreme performance limiter for multi-
threaded programs [12, 22]. Multiple objects that are not shared but
reside in the same cache line can cause that cache line to constantly
thrash unnecessarily from core to core. In our work, false sharing
could happen due to writes during the global update phase. We
eliminate false sharing for simulated registers by ensuring only one
thread can be a writer for each cache line. During the evaluation
phase, writes are to thread-private memory, and in the global up-
date phase, we pad the thread segment boundaries. False sharing on
simulated memory updates is possible but rare. Most memories in
hardware have a limited number of write ports, and they typically
do not access nearby addresses.

6 EVALUATION
We implement RepCut by extending ESSENT [10] to generate mul-
tithreaded simulators. Our work only requires around 2,000 addi-
tional lines of Scala code, including partitioning and code gener-
ation. The C++ code generated by RepCut requires the C++ stan-
dard library to provide threading and synchronization primitives
(C++11).

We use the following designs to benchmark (Table 1):
• RocketChip is an open-source system-on-chip generator
written in Chisel [3]. We select the default in-order core
(Rocket) and generate designs with 1, 2, or 4 cores.

577

RepCut: Superlinear Parallel RTL Simulation with Replication-Aided Partitioning ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

• BOOM is an open-source RISC-V superscalar out-of-order
core generator [4, 49]. BOOM is highly parameterized and
can be flexibly configured. We utilize three common con-
figurations: SmallBoomConfig (1-wide with 32 ROB entries),
LargeBoomConfig (3-wide with 96 ROB entries), and Mega-
BoomConfig (4-wide with 128 ROB entries), each generated
with 1, 2 or 4 cores.

Table 1: Evaluated Designs

Design IR Nodes Edges Sink Vtx Sink (%) Reg Writes
RocketChip-1C 69,995 116,246 11,137 15.91 3,149
RocketChip-2C 101,154 168,765 14,508 14.34 4,682
RocketChip-4C 164,266 276,114 21,150 12.88 7,710
SmallBOOM-1C 118,704 214,009 17,100 14.41 8,244
SmallBOOM-2C 198,520 364,247 26,434 13.32 14,872
SmallBOOM-4C 361,899 671,439 45,598 12.60 28,178
LargeBOOM-1C 229,699 459,582 25,957 11.30 15,483
LargeBOOM-2C 421,429 856,125 44,238 10.50 29,345
LargeBOOM-4C 803,911 1,648,664 80,320 9.99 56,893
MegaBOOM-1C 335,678 703,258 32,320 9.63 19,604
MegaBOOM-2C 632,292 1,341,756 56,680 8.96 37,523
MegaBOOM-4C 1,224,804 2,618,373 105,068 8.58 73,213

We evaluate the following simulators:

• RepCut implements our partitioning and code generation
approach. Since we start from ESSENT’s codebase with opti-
mizations disabled, a single-threaded simulation is equiva-
lent to ESSENT with the -O0 flag.

• RepCut UW (Unweighted) removes the benefit of our
simulation cost prediction model (Section 4.3) and simply
uses the partition size for balancing partitions.

• Verilator is an open-source Verilog simulator that provides
performance competitive with commercial simulators.

• Verilator PGO enables Verilator’s PGO optimization (Sec-
tion 2). Verilator’s static scheduler is able to obtain accurate
execution time information as a result of PGO.

We use a dual-socket server with 24 cores per socket for our eval-
uation (Table 2). We carefully control thread placement and pinning
(via numactl) to guarantee each simulator achieves its maximum
performance. We assign at most one thread per core. We compile
all simulators with clang++ 10 unless specifically mentioned. In
one experiment, we consider the benefit of using clang++ 14.

Table 2: Evaluation Environment

Field Value
CPU 2× Intel Xeon Platinum 8260
L1 Cache 48× private 32 KB L1I, 32 KB L1D
L2 Cache 48× private 1MB L2, inclusive
L3 Cache 2× shared 35.75MB L3, non-inclusive
OS Ubuntu 20.04 LTS (default), 22.04 LTS (Clang 14)
Compiler Clang++ 10.0 (default) and Clang++ 14.0, -O3
Verilator Verilator 4.226, -O2

6.1 Opportunity for Partitioning Design Graphs
We first consider the evaluated designs topological characteristics
to determine their parallelizability. After splitting the registers, the
designs contain a significant fraction of sink vertices (Table 1). A
large fraction of sink vertices makes the design graph wider and
shallower, which creates more opportunities for the hypergraph
partitioner.

6.2 Replication Costs Are Worthwhile
Replication is the unavoidable cost of our partitioning strategy. We
measure replication cost by considering the combined weight of
the extra work (Formula 3).

𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 =

∑
𝑝∈𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 (𝑤𝑒𝑖𝑔ℎ𝑡 (𝑝))
𝑤𝑒𝑖𝑔ℎ𝑡 (𝑒𝑛𝑡𝑖𝑟𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡) − 1 (3)

Fortunately, if the replication cost is modest, it can be easily
overcome for an overall speedup (Figure 6). We achieve an overall
replication cost of less than 25% for all designs we test when parti-
tioning up to 24 ways. Replication costs increase as the number of
partitions grows, while the rate of replication decreases with larger
designs and more cores per design, suggesting that independence
between different circuit blocks (cores in this case) can be efficiently
exploited. Replication costs are typically modest for a reasonable
number of partitions relative to the design size.

6.3 Performance & Superlinear Scalability
Wefirstmeasure the scalability of each simulator, that is the speedup
of each simulator relative to a single-threaded execution of itself
(Figure 7). Since each simulator has different internal algorithms
and implementations, we use speedup to evaluate the effectiveness
of its parallelization methodology while ignoring performance dif-
ferences from their baseline implementations. For a small design
such as RocketChip-1C, RepCut and Verilator scale similarly. As the
size of the design grows, RepCut scales significantly better (up to
6.31×) than Verilator, and it can even yield a superlinear speedup
on certain configurations which we discuss in the next subsection.
RepCut’s simulation time predictions provide a noticeable speedup
improvement (over RepCut UW).

Larger design sizes normally present scalability challenges. Un-
like other simulators, RepCut benefits from larger designs (Figure 8),
as they provide more opportunity to compensate for overheads
(weak-scaling). Verilator is unable to benefit from large designs
as its partitioner often yields a few gigantic partitions (Figure 2a)
which cause cores to frequently stall waiting for data dependences,
and thus ultimately undermine its parallel speedup. Those gigan-
tic partitions also diminish any potential benefit that Verilator’s
scheduler could obtain from PGO data.

We also compare the simulators’ absolute simulation perfor-
mance in terms of simulation speed measured in thousands of
simulated cycles per second (Figure 9). With a single thread, Rep-
Cut is faster for smaller designs but is outperformed by Verilator as
the design size increases. However, using additional threads greatly
accelerates RepCut, and it achieves a maximum simulation speed
of 149.15 KHz when using 6 threads to simulate the smallest design
(RocketChip-1C). Overall, RepCut at its best thread count is the

578

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Haoyuan Wang and Scott Beamer

0 10 20 30 40 50
Threads

0

10

20

30

Re
pl

ica
tio

n
Co

st
 (%

) RocketChip

0 10 20 30 40 50
Threads

SmallBoom

0 10 20 30 40 50
Threads

LargeBoom

0 10 20 30 40 50
Threads

MegaBoom
1 Core
2 Cores
4 Cores

Figure 6: Replication Cost (Formula 3) – Larger designs, especially with more cores, require less replication.

0
4
8

12
16

1
Co

re

Rocket Chip Small BOOM Large BOOM Mega BOOM

0
4
8

12
16
20

2
Co

re
s

0 8 16 24 32 40 48
Threads

0
4
8

12
16
20
24
28
32
36

4
Co

re
s

RepCut
RepCut UW
Verilator
Verilator PGO

0 8 16 24 32 40 48
Threads

0 8 16 24 32 40 48
Threads

0 8 16 24 32 40 48
Threads

Figure 7: Speedups relative to singled-threaded execution of self (Scalability) – All implementations benefit from larger designs
(moving right and down), but RepCut benefits even more from increased scalability. Figure 9 shows absolute performance.
The hitch for RepCut UW onMegaBOOM-4C (bottom right) is reproducible and most likely caused by imbalance caused by
significant skew in the computational cost of nodes assigned to each partition, since it does not have a cost model.

0 200K 400K 600K 800K 1.0M 1.2M
of FIRRTL Nodes

10

20

30

Pe
ak

 S
pe

ed
up

 (x
)

RepCut
RepCut UW
Verilator
Verilator PGO

Figure 8: Peak (self-relative) speedup for every design –
Larger designs (moving right) enable higher speedups.

fastest for every design, and is significantly faster (2.22 - 3.98×)
than Verilator.

The performance of simulators generated by RepCut are signif-
icantly influenced by compiler optimizations, and using a more
recent and thus more advanced compiler can result in significant
speedups.We compare the performance of RepCut, RepCut UW, and

Verilator using different versions of the clang compiler (Figure 10).
RepCut benefits greatly from better optimizations, and using the
latest version of clang (14) nearly doubles the simulation perfor-
mance on the largest design (MegaBOOM-4C). Furthermore, the
newer compiler better aligns with our simulation time prediction
model, as demonstrated by a significant performance advantage
over RepCut UW (Figure 9). However, unlike RepCut, using the
newer compiler has a limited improvement on Verilator’s perfor-
mance.

6.4 Analysis to Understand Performance
A superlinear speedup is not typical in parallel programming and
is worth investigating. It implies the parallelized program expends
less aggregate CPU time than the sequential version.

To dig deeper, we collect performance counter information us-
ing perf3 regarding caches, branches, and pipeline stalls for an
increasing number of threads (and cores) within a socket and even
interleaved across sockets (Table 3). We analyze MegaBOOM-4C

3perf competes for cache resources with the RepCut simulator and significantly slows
down only a single-threaded simulation of MegaBOOM-4C. For consistency, we use
measurements without perf for computing speedups.

579

RepCut: Superlinear Parallel RTL Simulation with Replication-Aided Partitioning ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

0

50

100

150

Ro
ck

et
 C

hi
p

Sp
ee

d
(K

H
z)

1 Core 2 Cores 4 Cores

0

50

100

Sm
al

l B
O

O
M

Sp
ee

d
(K

H
z)

0

20

40

60

La
rg

e
BO

O
M

Sp
ee

d
(K

H
z)

0 8 16 24 32 40 48
Threads

0

20

40

M
eg

a
BO

O
M

Sp
ee

d
(K

H
z)

0 8 16 24 32 40 48
Threads

RepCut RepCut UW Verilator Verilator PGO

0 8 16 24 32 40 48
Threads

Figure 9: Simulation Speed (KHz) vs. Number of Simulation Threads – RepCut enjoys a significant performance advantage,
especially for larger designs or designs with more cores. Despite having comparable scalability (Figure 7) on the difficult to
scale smallest design (RocketChip-1C), RepCut provides greater absolute performance.

0
40
80

120
160

Sp
ee

d
(K

Hz
)

RocketChip-1C

0
10
20
30
40
50

Sp
ee

d
(K

Hz
)

LargeBOOM-4C

0 8 16 24 32 40 48
Threads

0

10

20

30

40

Sp
ee

d
(K

Hz
)

MegaBOOM-4C

RepCut Clang10
RepCut Clang14

Verilator Clang10
Verilator Clang14

RepCut UW Clang10
RepCut UW Clang14

Figure 10: Compiler Impact on Simulation Speed (KHz) –
The performance of RepCut is significantly improved by
using the Clang 14 compiler (solid line) compared to Clang
10 (dashed line). Moreover, our simulation time prediction
model delivers an even greater performance benefit when
using the newer compiler (RepCut vs. RepCut UW).

since it is the largest design in this work. When compiled as a sim-
ulator, it has a program binary size of 31MB to 36MB, depending
on the thread count. The large binary size leaves insufficient last-
level cache (LLC) space for the simulator when running on a single
socket.

The instruction caches are overwhelmed by the large design,
but the data caches enjoy frequent hits. Increasing the number of
threads used shrinks the partition sizes and thus the corresponding
program segments assigned to each thread. Using more threads
does little to improve the L1 instruction cache hit rate, as the smaller
partitions are still much larger than the L1 cache size (Table 3). Most
misses for the L2 cache are code read misses (l2_rqsts.code_rd_miss)
and they drop as we use more threads. The lowest L2 cache code
read miss rate occurs with 24 cores (a full socket) when the amount
of code allocated to each core approaches the L2 cache size. A re-
duced code footprint also contributes to improved processor mem-
ory prefetcher accuracy. Interestingly, using more cores also de-
creases the number of L3 misses, since there is additional free space
in the non-inclusive L3 cache as more code resides uniquely in the
L2 caches.

The variation in the number of instructions executed is due in
large part to threads waiting at thread barriers and the small amount
of replication introduced by our partitioning approach. Using more
cores reduces the overall branch miss rate from 5.29% with a single-
thread to 0.31% with 8 threads, and ultimately 0.18% with 48 threads
(2 sockets).

Using more threads results in a considerable reduction in fron-
tend bubbles because more processor resources become available
and the size of the code allocated to each core decreases. It is worth

580

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Haoyuan Wang and Scott Beamer

Table 3: Performance counter measurements for RepCut simulating MegaBOOM-4C. Considers various thread counts and
allocation entirely on the same socket or interleaved across both sockets. Event counts are total across all cores.

1 Socket 2 Sockets, Interleaved
Perf Event 1 Thread 4 Threads 8 Threads 16 Threads 24 Threads 4 Threads 8 Threads 16 Threads 24 Threads 48 Threads

Ca
ch
e

L1-icache-load-misses 543 B 563 B 543 B 550 B 556 B 565 B 543 B 549 B 556 B 586 B
L1-dcache-load-misses 137 B 108 B 85 B 77 B 74 B 107 B 85 B 77 B 74 B 67 B
L1-dcache-loads 1,786 B 1,830 B 1,854 B 1,862 B 1,881 B 1,807 B 1,842 B 1,865 B 1,883 B 2,061 B
L1-dcache-stores 1,522 B 1,530 B 1,558 B 1,577 B 1,592 B 1,531 B 1,558 B 1,577 B 1,590 B 1,677 B
l2_rqsts.code_rd_miss 536 B 551 B 537 B 453 B 256 B 551 B 536 B 456 B 259 B 14 B
l2_rqsts.code_rd_hit 4 B 4 B 5 B 96 B 300 B 5 B 5 B 92 B 297 B 571 B
l2_rqsts.pf_miss 36 B 38 B 28 B 10 B 13 B 36 B 26 B 10 B 14 B 26 B
l2_rqsts.pf_hit 58 B 47 B 35 B 31 B 34 B 44 B 33 B 26 B 24 B 14 B
l2_rqsts.all_demand_miss 550 B 569 B 553 B 462 B 264 B 571 B 553 B 465 B 267 B 26 B
l2_rqsts.all_demand_data_rd 70 B 48 B 33 B 29 B 27 B 48 B 34 B 29 B 28 B 27 B
l2_rqsts.miss 586 B 608 B 581 B 472 B 278 B 608 B 580 B 476 B 281 B 53 B
LLC-load-misses 331M 212M 146M 25M 15M 335M 1,214M 1,404M 1,416M 4,075M
LLC-loads 5,915M 7,348M 5,974M 3,997M 4,906M 7,574M 6,154M 4,363M 5,369M 10,413M
LLC-store-misses 426M 217M 101M 34M 23M 48M 85M 184M 228M 703M
LLC-stores 7,105M 7,432M 6,793M 1,491M 1,553M 8,699M 7,332M 1,205M 950M 1,309M

Br
an
ch instructions 5,937 B 6,129 B 6,266 B 6,349 B 6,442 B 6,033 B 6,212 B 6,367 B 6,445 B 7,110 B

branch-misses 4,537M 668M 413M 364M 360M 664M 391M 361M 350M 385M
branches 85 B 124 B 133 B 122 B 131 B 101 B 121 B 128 B 133 B 216 B

Pi
pe
lin

e topdown-fetch-bubbles 50,648 B 28,988 B 24,302 B 14,930 B 10,227 B 15,154 B 13,260 B 11,699 B 8,861 B 2,548 B
icache_16b.ifdata_stall 10,634 B 5,691 B 4,724 B 2,519 B 1,543 B 2,446 B 2,127 B 1,720 B 1,204 B 88 B
icache_64b.iftag_stall 3,656 B 930 B 373 B 216 B 193 B 688 B 356 B 239 B 205 B 174 B

M
is
c Wall Clock Time 3,774.80 s 752.33 s 361.11 s 144.48 s 101.07 s 453.94 s 259.19 s 130.10 s 87.56 s 71.56 s

CPU Time 3,773.63 s 3,004.75 s 2,873.12 s 2,251.22 s 2,292.70 s 1,807.52 s 2,040.81 s 1,999.87 s 1,939.03 s 2,925.87 s

A
na
ly
si
s IPC 0.41 0.55 0.61 0.85 0.95 0.87 0.83 0.89 0.93 0.79

Branch Miss Rate 5.29% 0.54% 0.31% 0.30% 0.27% 0.66% 0.32% 0.28% 0.26% 0.18%
Extra Instructions (vs. 1 thread) - 3.23% 5.55% 6.95% 8.51% 1.61% 4.63% 7.24% 8.56% 19.75%
Replication Cost - 0.27% 1.30% 3.00% 3.81% 0.27% 1.30% 3.00% 3.81% 10.95%

noting our performance events are reported in aggregate, so a met-
ric that appears largely unchanged actually occurs fewer times per
core. As the amount of work per core becomes sufficiently small,
the core crosses a performance threshold when going from frequent
cache misses to frequent cache hits. Achieving a 27.10× speedup
using 24 threads is understandable when considering that the IPC
doubles from 0.41 using 1 thread to 0.95 with 24 threads.

0 4 8 12 16 20 24
Threads

0
4
8

12
16
20
24
28

Sp
ee

du
p

(x
)

MegaBOOM-1C
Same Socket
Interleaved

0 4 8 12 16 20 24
Threads

MegaBOOM-2C

0 4 8 12 16 20 24
Threads

MegaBOOM-4C

Figure 11: Socket Allocation Impact on RepCut’s Speedup
on MegaBOOM Design – Typically, performance is better
if threads are allocated on the same socket due to inter-
socket latency penalties. However, for the biggest design
(MegaBOOM-4C), interleaving the threads across sockets per-
forms better due to effectively twice the L3 cache capacity.

RepCut is able to take advantage of additional processor re-
sources for sufficiently large designs, even if they come from mul-
tiple sockets. Parallel RTL simulators are not unlike most parallel

programs that frequently access main memory and perform syn-
chronizations across host cores. They prefer their threads to be
allocated within the same NUMA node to avoid overhead incurred
by NUMA (inter-socket) communication latency. Though RepCut-
generated simulators are not heavily communication bound, for
most benchmark designs, the simulation speed is slower when we
manually interleave them across sockets using numactl (Figure 11).
However, we also observe that MegaBOOM-4C is sufficiently large
to be an exception. The identical simulator generated by RepCut
achieves a remarkable 8.60× speedup using 8 threads, 20.46× us-
ing 16 threads, and even 29.53× using 24 threads when running
interleaved across two sockets, significantly outperforming itself
running within a single socket, which already achieves a super-
linear speedup. When running with both sockets, the simulator
benefits from double the L3 cache capacity which greatly reduces
the number of pipeline bubbles caused by instruction fetch hazards
(Table 3). The inevitable inter-socket communication occurs only
once per cycle, and it can be largely diluted for a sufficiently large
design.

6.5 Profiling RepCut Reveals High Utilization
To analyze the parallelization efficiency of our implementation,
we profile our RepCut-generated simulators by collecting precise
timestamps4 at the start and end of each simulation phase (Fig-
ure 2b). We record and process the timestamps offline in order to
minimize the performance impact introduced by profiling.

4We utilize x86’s rdtsc instruction which returns the value of the time stamp counter
that increases at a constant rate across all cores.

581

RepCut: Superlinear Parallel RTL Simulation with Replication-Aided Partitioning ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

0 2 4 6 8 10
Thread ID

0
5K

10
K

15
K

RD
TS

C
Ti

ck
s

a) Eval, RocketChip-4C, 99.80% of data

0 2 4 6 8 10
Thread ID

0
5K

10
K

15
K

RD
TS

C
Ti

ck
s

b) RocketChip-4C, ib_factor = 0.43

0 2 4 6 8 10
Thread ID

0
10

0K
20

0K
30

0K
RD

TS
C

Ti
ck

s

c) Eval, MegaBOOM-4C, 99.85% of data

0 2 4 6 8 10
Thread ID

0
10

0K
20

0K
30

0K
RD

TS
C

Ti
ck

s

d) MegaBOOM-4C, ib_factor = 0.14

Global Update Barrier
Global Update Phase
Evaluation Barrier
Evaluation Phase
Global Update Barrier (Last)

Figure 12: Thread Timing Profiles per Simulated Cycle for RocketChip-4C (small) and MegaBOOM-4C (large) – Both executions
demonstrate little variance in the execution time of a partition (a & c). The larger design has more useful work to amortize the
fixed amount of synchronization that limits the smaller design (b & d). Threads reordered for illustration.

We present data for only two configurations due to page limita-
tions (Figure 12). We visualize a smaller design (RocketChip-4C) and
the largest design (MegaBOOM-4C) which when using 12 threads,
provide a modest 6.61× speedup or an impressive 13.60× speedup,
respectively. We drop extreme outliers for analysis of the evaluation
stage, as most of those outliers are inevitably introduced by the
operating system (e.g. context switches).

There is typically little variance in the evaluation time for each
thread (Figure 12a & Figure 12c), as work is statically assigned to
threads and that work has few data-dependent branches. Looking
at how each thread spends its time within a simulated cycle gives
a better view of efficiency (Figure 12b & Figure 12d). The threads
in the larger design (MegaBOOM-4C) spend a greater fraction of
the time doing useful work (evaluation). Although some threads
spend a large fraction of time waiting at the barrier (e.g. thread 0),
they also complete their evaluation promptly. This is in contrast to
the results from the smaller design (RocketChip-4C) which enjoys
a more modest speedup since most threads spend less time doing
useful work (evaluation). This is partly an inevitable challenge for
smaller designs, as in this case, the execution time for a simulated
cycle is nearly an order of magnitude less. That shorter simulated
cycle time provides less time to amortize the near-fixed costs for
thread synchronization and the global update phase. Additionally,
thread 11 (Figure 12b) is a clear straggler which causes other threads
to spend more time waiting at the barrier. We investigate workload
imbalance in the next subsection.

6.6 Quantifying Workload Imbalance
Our approach uses barrier synchronization for each simulated cycle
to update global data, and thus workload imbalance can greatly
degrade parallelization efficiency. More specifically, a tiny partition
will not severely hinder performance, because a single thread wait-
ing is not significant. However, a partition that is much larger than
average should be avoided, as all of the other threads will be wait-
ing for it at the barrier. We quantify imbalance and parallelization
efficiency as:

imbalance factor =
max(part size) − avg(part size)

avg(part size) (4)

parallelization efficiency =
achieved speedup
ideal speedup

(5)

There is a strong trend betweenworkload balance and paralleliza-
tion efficiency (Figure 13). We trace the balance through various
stages of our tool flow and execution to find the source of imbalance
(Figure 14). KaHyPar partitions the intersection hypergraph in an al-
most perfectly balanced manner (marked as Excluding Replication),
but the resulting design partitions exhibit significant imbalance
(marked as Including Replication). Once those partitions actually
execute, there can be additional imbalance (marked as Measured).
Imbalances exist in our approach as a consequence of our parti-
tioning strategy and inaccurate execution time predictions. Since
our simulator is activity-oblivious, circuit activity is unlikely to
introduce noticeable variance.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Imbalance Factor

0.25

0.50

0.75

1.00

1.25

Pa
ra

lle
liz

at
io

n
Ef

fic
ie

nc
y

Figure 13: Parallelization efficiency degrades with load im-
balance, suggesting load imbalance is a performance limiter.
Formulas 4 & 5 define metrics. Uses profiled executions of
RepCut for all designs and thread counts.

The proxy problem we provide to the hypergraph partitioner
encodes the cost of replication as weights on the hyperedges. How-
ever, the partitioner attempts to balance the vertex weights while it
attempts to reduce the total weight of the hyperedges cut. Minimiz-
ing the cut will minimize the replication, but how that replication is
distributed is not controlled and can thus cause partition imbalance.
Furthermore, the execution time of a partition on real hardware can
be challenging to predict, as the compiler may be able to optimize
some structures better than others and the execution may be more
efficient on the host core’s microarchitecture. Despite an imper-
fect balance, our approach is still able to provide breakthrough
scalability and overall performance for RTL simulation.

582

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Haoyuan Wang and Scott Beamer

0.0

0.3

0.6

1
Co

re

Rocket Chip Small BOOM Large BOOM Mega BOOM

0.0

0.3

0.6

2
Co

re
s

0 4 8 12 16 20 24
Threads

0.0

0.3

0.6

4
Co

re
s

0 4 8 12 16 20 24
Threads

Excluding Replication Including Replication Measured Imbalance

0 4 8 12 16 20 24
Threads

0 4 8 12 16 20 24
Threads

Figure 14: Imbalance Factor - A greater number of partitions worsens the Imbalance Factor (Formula 4) which is caused both by
uneven replication and inaccurate execution time predictions. We exclude data beyond 24 cores to avoid inaccuracy introduced
by NUMA latency.

7 RELATEDWORK
We focus our discussion of related work specifically to parallel
RTL simulation. Both event-driven and full-cycle approaches have
been parallelized, and both struggle with low parallelism caused
by circuit connectivity. Event-driven approaches can be limited by
waiting or fallback, while full-cycle approaches can be limited by
synchronization and load imbalance.

Using conventional parallelization methods on event-driven sim-
ulation demonstrate limited scalability [1, 15, 32]. Alternatively,
MULTES uses simplified high-level simulation to quickly gener-
ate checkpoints it then simulates in parallel with detailed simu-
lation [29]. Cascade executes different simulation methods (CPU
and FPGA) in parallel and dynamically switches over to mask long
compilation times [41]. Parallelizing event-driven simulation, es-
pecially for a distributed context, requires additional parallelism
to cope with the increased latency. Common techniques include
optimistic concurrency or predicting future input stimuli [2, 28, 47].
However, both checkpoints or accurate predictions require output
generated from a higher abstraction level simulation, which is not
always available for RTL simulation.

Efficient parallelization can be eased with the help of a user or
hardware designer manually intervening [20]. ArchHDL achieves
promising speedups with a customized language and user-provided
parallel hints [39]. Though converting ArchHDL to Verilog is feasi-
ble, rewriting existing HDL designs and providing adequate hints
will require extensive labor.

Using GPUs to accelerate RTL simulation requires more work-
load regularity than the multicore methods we explore in this work.
Coping with this constraint, Qian et al. translate RTL code into GPU
kernels using only one thread per warp (to limit divergence) and
they achieve considerable speedups when running benchmark de-
signs with regular, repetitive patterns such as adder arrays and AES
encryption [36]. RTLflow batches multiple simulations with differ-
ent stimuli on the same design to exploit the GPU’s SIMT capabili-
ties, and it achieves much higher aggregate simulation throughput
than a single stimulus [33]. Gate-level simulation has successfully

been parallelized on GPUs by regularizing the design by simulating
logic gates via table lookups [16, 17, 48]. Gate-level simulation has
an order of magnitude more logic nodes than RTL simulation, but
RTL simulation has more diverse internal behaviors, which make
truth table lookups impractical.

Hardware support can accelerate parallel hardware simulation
by enabling more sophisticated scheduling. The Swarm architecture
uses speculative execution to accelerate ordered irregular paral-
lelism [24]. An architectural simulation of Swarm demonstrates a
linear speedup on up to 64 cores on a circuit simulation benchmark.
Unlike Swarm, RepCut does not rely on any specialized hardware
and can thus be more easily deployed on conventional systems.

Using replication to avoid communication is an established opti-
mization for parallel computing, especially in distributed contexts.
When replicating, one can replicate data and/or computation. The
appropriately named communication-avoiding linear algebra work
uses replication to avoid communication in both multicore (to re-
duce memory bandwidth) and distributed (to reduce network band-
width) contexts [7]. Mirroring or caching remote vertices is com-
monly done in distributed graph frameworks, and PowerGraph [19],
CuSP [21], and Gluon [18] are notable examples. By contrast, our
work only replicates computation and not data since we use shared
memory. Furthermore, our partitioning seeks to fully disconnect a
directed graph to require only one round of communication per sim-
ulated cycle, which is different than what is typically encountered
by general-purpose distributed graph frameworks.

Chatterjee et al. demonstrate the parallelization benefit of over-
lapping partitions (replication) for gate-level simulation [16, 17].
However, their approach must limit the depth of partitions to keep
replication costs manageable. As a result, they must partition the
design into layers of parallel partitions, and synchronization and
communication at layer boundaries still limits performance. A high
amount of replication also adds considerable extra computation
and degrades performance.

Throughout this work, we discuss (Section 2) and evaluate (Sec-
tion 6) Verilator [43] and we build our experiments on ESSENT [10].

583

RepCut: Superlinear Parallel RTL Simulation with Replication-Aided Partitioning ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

8 CONCLUSION
In this work, we introduce RepCut. With our novel partitioning
scheme and optimization opportunities that emerge from our re-
duced synchronization, RepCut achieves superlinear speedups on
large complex designs. Such speedups make parallel RTL simu-
lation attractive in production as both individual simulations as
well as overall simulation throughput benefit. Our analysis with
performance counters reveals that parallel RTL simulation becomes
a processor frontend-bound application once synchronization is
largely optimized. This is a productive outcome, as this issue is more
tractable to address, whether by more parallelization (to reduce the
code footprint per core) or by building more capable cores. Further
simulation efficiency improvements will be most appreciable in
terms of decreasing the size of the design necessary for parallel
benefit.

Our key insight is to generate independent partitions at the cost
of duplicating overlapping areas. We quantify the replication cost
and demonstrate it is not only acceptable, but we are able to achieve
large speedups in spite of it. Furthermore, our method of using a
proxy problem ensures the hypergraph partitioner attempts to
minimize the amount of replication. Our heuristic-based execution
time estimates noticeably improve RepCut’s partition balance. As
demonstrated by our evaluation, our method is applicable to RTL
simulation and may easily be applied to related problems such as
gate-level simulation.

ACKNOWLEDGMENTS
Wewould like to thank the anonymous reviewers for their insightful
feedback on this work. This material is based upon work supported
by, or in part by, the Army Research Laboratory and the Army
Research Office under contract/grant W911NF1910466.

A ARTIFACT APPENDIX
A.1 Abstract
This artifact contains the source code for RepCut, as well as other
open source projects that are required to reproduce the results in
the paper. We include Verilator 4.226 as a baseline. In addition, this
artifact also contains scripts and a Makefile to compile and run the
generated simulators, as well as to reproduce every figure and table
from experimental data. This artifact provides a quick compilation,
which compiles and run a single design (DualSmallBoomConfig)
with 1, 2, 4, 6 and 8 threads, as well as full compilation that compiles
everything and reproduces figures (Figure 2a, 2b, 6, 7, 8, 9, 11, 12, 13,
14) and tables (Table 1, 3) in this work. Please note, a full compilation
takes a significant amount of time and compute resources, as it
compiles many variants (every thread count by 2), and like most
parallel scaling experiments, much of the time is spent on the low
thread count instances.

A.2 Artifact check-list (meta-information)
• Compilation: Clang++, Java (clang 14, OpenJDK 11 recommended).
• Run-time environment: Linux. This artifact is tested under Ubuntu
20.04 LTS and Ubuntu 22.04 LTS (Table 2).

• Hardware: Multi-core x86 platform is required. Please leave suffi-
cient memory for compilation (See later). To fully reproduce result
in this paper, we recommend platforms that have at least 48 cores.

• How much disk space required (approximately)?: 60GB for a
quick compilation, 500GB for a full compilation.

• How much time is needed to prepare workflow (approxi-
mately)?: 2 hours for a quick compilation, 54 hours for a full com-
pilation.

• How much time is needed to complete experiments (approx-
imately)?: 5minutes for a quick compilation, 38 hours for a full
compilation.

• Publicly available?: Yes, GitHub5.
• Code licenses (if publicly available)?: BSD
• Archived (provide DOI)?: Yes, https://doi.org/10.5281/zenodo.
7621336

A.3 Description
A.3.1 How to access. The artifact can be downloaded from Zen-
odo6. A docker image7 is also avaiable with all dependencies in-
stalled. Extracting this artifact requires 2.1 GB disk space. More disk
space is needed to compile and run the artifact.

A.3.2 Hardware dependencies. No special hardware is required.
However, we recommend running this artifact on a system with
at least 8 cores to observe parallel speedup. Please also make sure
have sufficient memory to compile this artifact.

A.3.3 Software dependencies. Please check RepCut-AE/README.md,
Section 1.

A.4 Installation
Compilation script is provided as RepCut-AE/Makefile. Please
read RepCut-AE/README.md Section 4 for more information.

A.5 Experiment workflow
Experiment script is provided as RepCut-AE/Makefile. Please read
RepCut-AE/README.md for more information.

A.6 Evaluation and expected results
Please read RepCut-AE/README.md for more information.

A.7 Experiment customization
Please read RepCut-AE/README.md Section 4 for more information.
Changing the number of threads may break the plotting scripts.

REFERENCES
[1] Tariq B. Ahmad and Maciej Ciesielski. 2014. Parallel Multi-core Verilog HDL Sim-

ulation Using Domain Partitioning. In IEEE Computer Society Annual Symposium
on VLSI. 619–624. https://doi.org/10.1109/ISVLSI.2014.47

[2] Tariq Bashir Ahmad, Namdo Kim, Byeong Min, Apurva Kalia, Maciej Ciesielski,
and Seiyang Yang. 2012. Scalable parallel event-driven HDL simulation for
multi-cores. In International Conference on Synthesis, Modeling, Analysis and
Simulation Methods and Applications to Circuit Design (SMACD). 217–220. https:
//doi.org/10.1109/SMACD.2012.6339456

[3] Krste Asanović, Rimas Avižienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, et al. 2016. The Rocket Chip Generator. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17 4 (2016).

[4] Krste Asanović, David A Patterson, and Christopher Celio. 2015. The Berkeley
Out-of-Order Machine (BOOM): An Industry-Competitive, Synthesizable, Param-
eterized RISC-V Processor. EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2015-167 (2015).

5https://github.com/ucsc-vama/essent/tree/repcut
6https://doi.org/10.5281/zenodo.7621336
7https://hub.docker.com/r/haooozi/repcut-ae

584

https://doi.org/10.5281/zenodo.7621336
https://doi.org/10.5281/zenodo.7621336
https://doi.org/10.1109/ISVLSI.2014.47
https://doi.org/10.1109/SMACD.2012.6339456
https://doi.org/10.1109/SMACD.2012.6339456
https://github.com/ucsc-vama/essent/tree/repcut
https://doi.org/10.5281/zenodo.7621336
https://hub.docker.com/r/haooozi/repcut-ae

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Haoyuan Wang and Scott Beamer

[5] David A Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner. 2013.
Graph partitioning and graph clustering. Vol. 588. American Mathematical Society
Providence, RI. https://doi.org/10.1090/conm/588

[6] Mary L. Bailey, Jack V. Briner, and Roger D. Chamberlain. 1994. Parallel Logic
Simulation of VLSI Systems. Comput. Surveys 26, 3 (Sep. 1994), 255–294. https:
//doi.org/10.1145/185403.185424

[7] Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. 2011. Minimizing
communication in numerical linear algebra. SIAM J. Matrix Anal. Appl. 32, 3
(2011), 866–901. https://doi.org/doi.org/10.1137/090769156

[8] Pete Bannon, Ganesh Venkataramanan, Debjit Das Sarma, and Emil Talpes. 2019.
Computer and Redundancy Solution for the Full Self-Driving Computer. In IEEE
Hot Chips 31 Symposium (HCS). https://doi.org/10.1109/HOTCHIPS.2019.8875645

[9] Scott Beamer. 2020. A Case for Accelerating Software RTL Simulation. IEEE
Micro 40, 4 (2020), 112–119. https://doi.org/10.1109/MM.2020.2997639

[10] Scott Beamer and David Donofrio. 2020. Efficiently Exploiting Low Activity
Factors to Accelerate RTL Simulation. In Design Automation Conference (DAC).
https://doi.org/10.1109/DAC18072.2020.9218632

[11] Scott Beamer, Thomas Nijssen, Krishna Pandian, and Kyle Zhang. 2021. ESSENT:
A High-Performance RTL Simulator. InWorkshop on Open-Source EDA Technology
(WOSET), International Conference on Computer Aided Design (ICCAD).

[12] William J Bolosky and Michael L Scott. 1993. False Sharing and its Effect on
Shared Memory Performance. In Symposium on Experimental Distributed and
Multiprocessor Systems. 57–71.

[13] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian
Schulz. 2016. Recent Advances in Graph Partitioning. (2016), 117–158. https:
//doi.org/10.1007/978-3-319-49487-6_4

[14] Ümit Çatalyürek and Cevdet Aykanat. 2011. PaToH (Partitioning Tool for Hyper-
graphs). Springer US, Boston, MA, 1479–1487. https://doi.org/10.1007/978-0-
387-09766-4_93

[15] K.M. Chandy and J. Misra. 1979. Distributed Simulation: A Case Study in De-
sign and Verification of Distributed Programs. IEEE Transactions on Software
Engineering SE-5, 5 (1979), 440–452. https://doi.org/10.1109/TSE.1979.230182

[16] Debapriya Chatterjee, Andrew DeOrio, and Valeria Bertacco. 2009. Event-Driven
Gate-Level Simulation with GP-GPUs. In Design Automation Conference (DAC)
(San Francisco, California). 557–562. https://doi.org/10.1145/1629911.1630056

[17] Debapriya Chatterjee, Andrew Deorio, and Valeria Bertacco. 2011. Gate-Level
Simulation with GPU Computing. ACM Trans. Des. Autom. Electron. Syst. 16, 3,
Article 30 (Jun. 2011). https://doi.org/10.1145/1970353.1970363

[18] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks,
Nikoli Dryden, Marc Snir, and Keshav Pingali. 2018. Gluon: A Communication-
Optimizing Substrate for Distributed Heterogeneous Graph Analytics. In Confer-
ence on Programming Language Design and Implementation (PLDI) (Philadelphia,
PA, USA). 752–768. https://doi.org/10.1145/3192366.3192404

[19] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. Powergraph: Distributed Graph-Parallel Computation on Natural Graphs.
In Symposium on Operating Systems Design and Implementation (OSDI). 17–30.

[20] J. P. Grossman, Brian Towles, Joseph A. Bank, and David E. Shaw. 2013. The Role
of Cascade, a Cycle-Based Simulation Infrastructure, in Designing the Anton
Special-Purpose Supercomputers. InDesign Automation Conference (DAC) (Austin,
Texas). Article 122, 9 pages. https://doi.org/10.1145/2463209.2488884

[21] Loc Hoang, Roshan Dathathri, Gurbinder Gill, and Keshav Pingali. 2021. CuSP:
A Customizable Streaming Edge Partitioner for Distributed Graph Analytics.
SIGOPS Operating Systems Review 55, 1 (June 2021), 47–60. https://doi.org/10.
1145/3469379.3469385

[22] Randall L. Hyde and Brett D. Fleisch. 1996. An Analysis of Degenerate Sharing
and False Coherence. J. Parallel and Distrib. Comput. 34, 2 (1996), 183–195.
https://doi.org/10.1006/jpdc.1996.0054

[23] Adam Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang, Albert Mag-
yar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Lawson, and Jonathan
Bachrach. 2017. Reusability is FIRRTL ground: Hardware construction lan-
guages, compiler frameworks, and transformations. In International Conference
on Computer-Aided Design (ICCAD). 209–216. https://doi.org/10.1109/ICCAD.
2017.8203780

[24] Mark C. Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel Sanchez.
2015. A scalable architecture for ordered parallelism. In International Symposium
on Microarchitecture (MICRO). 228–241. https://doi.org/10.1145/2830772.2830777

[25] George Karypis. 1998. hMETIS 1.5: A Hypergraph Partitioning Package.
http://www. cs. umn. edu/˜ metis (1998).

[26] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM Journal on Scientific Computing
20, 1 (1998), 359–392. https://doi.org/10.1137/S1064827595287997

[27] G. Karypis and V. Kumar. 1998. Multilevel Algorithms for Multi-Constraint Graph
Partitioning. In Conference on Supercomputing (SC). 28–28. https://doi.org/10.
1109/SC.1998.10018

[28] Dusung Kim, Maciej Ciesielski, and Seiyang Yang. 2011. A New Distributed
Event-Driven Gate-Level HDL Simulation by Accurate Prediction. In Design,
Automation & Test in Europe (DATE). https://doi.org/10.1109/DATE.2011.5763280

[29] Dusung Kim, Maciej Ciesielski, and Seiyang Yang. 2013. MULTES: Multilevel
Temporal-Parallel Event-Driven Simulation. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 32, 6 (2013), 845–857. https:
//doi.org/10.1109/TCAD.2013.2237769

[30] Alexey Kupriyanov, Frank Hannig, and Jürgen Teich. 2004. High-Speed Event-
Driven RTL Compiled Simulation. In Computer Systems: Architectures, Modeling,
and Simulation, Andy D. Pimentel and Stamatis Vassiliadis (Eds.). Springer Berlin
Heidelberg, 519–529. https://doi.org/10.1007/978-3-540-27776-7_53

[31] Luciano Lavagno, Igor L Markov, Grant Martin, and Louis K Scheffer. 2017.
Electronic Design Automation for IC System Design, Verification, and Testing. CRC
Press. https://doi.org/10.1201/b19569

[32] Tun Li, Yang Guo, and Si-Kun Li. 2004. Design and Implementation of a Parallel
Verilog Simulator: PVSim. In International Conference on VLSI Design. 329–334.
https://doi.org/10.1109/ICVD.2004.1260944

[33] Dian-Lun Lin, Haoxing Ren, Yanqing Zhang, Brucek Khailany, and Tsung-Wei
Huang. 2023. From RTL to CUDA: A GPU Acceleration Flow for RTL Simulation
with Batch Stimulus. In International Conference on Parallel Processing (ICPP)
(Bordeaux, France). Article 88. https://doi.org/10.1145/3545008.3545091

[34] Jonas Oberhauser, Rafael Lourenco de Lima Chehab, Diogo Behrens, Ming Fu,
Antonio Paolillo, Lilith Oberhauser, Koustubha Bhat, Yuzhong Wen, Haibo Chen,
Jaeho Kim, and Viktor Vafeiadis. 2021. VSync: Push-Button Verification and
Optimization for Synchronization Primitives on Weak Memory Models. In In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). 530–545. https://doi.org/10.1145/3445814.3446748

[35] Clément Pit-Claudel, Thomas Bourgeat, Stella Lau, Arvind, and Adam Chlipala.
2021. Effective Simulation and Debugging for a High-Level Hardware Language
Using Software Compilers. In International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). 789–803. https:
//doi.org/10.1145/3445814.3446720

[36] Hao Qian and Yangdong Deng. 2011. Accelerating RTL Simulation with GPUs.
In International Conference on Computer-Aided Design (ICCAD). 687–693. https:
//doi.org/10.1109/ICCAD.2011.6105404

[37] Alberto Ros and Stefanos Kaxiras. 2015. Callback: Efficient Synchronization
without Invalidation with a Directory Just for Spin-Waiting. In International
Symposium on Computer Architecture (ISCA) (Portland, Oregon). 427–438. https:
//doi.org/10.1145/2749469.2750405

[38] Vivek Sarkar. 1987. Partitioning and Scheduling Parallel Programs for Execution
on Multiprocessors. Ph. D. Dissertation. Stanford University.

[39] Shimpei Sato, Ryohei Kobayashi, and Kenji Kise. 2018. ArchHDL: A Novel
Hardware RTL Modeling and High-Speed Simulation Environment. IEICE
Transactions on Information and Systems E101.D, 2 (2018), 344–353. https:
//doi.org/10.1587/transinf.2017RCP0012

[40] G. Saucier, D. Brasen, and J.P. Hiol. 1993. Partitioning with Cone Structures. In
International Conference on Computer Aided Design (ICCAD). 236–239. https:
//doi.org/10.1109/ICCAD.1993.580063

[41] Eric Schkufza, Michael Wei, and Christopher J. Rossbach. 2019. Just-In-Time
Compilation for Verilog: A NewTechnique for Improving the FPGA Programming
Experience. In International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (Providence, RI, USA). 271–286. https:
//doi.org/10.1145/3297858.3304010

[42] Sebastian Schlag, Tobias Heuer, Lars Gottesbüren, Yaroslav Akhremtsev, Christian
Schulz, and Peter Sanders. 2022. High-Quality Hypergraph Partitioning. ACM
Journal Experimental Algorithmics (Apr. 2022). https://doi.org/10.1145/3529090

[43] Wilson Snyder. 2017. Verilator: Speedy Reference Models, Direct from RTL.
Presentation to University of Massachusetts Amherst (2017). https://www.veripool.
org/papers/Verilator_Modeling_UMass2017b_pres.pdf

[44] Wilson Snyder. 2018. Verilator 4.0 – Open Simulation Goes Multithreaded. In
Open Source Digital Design Conference (ORConf).

[45] Chris Walshaw and Mark Cross. 2007. JOSTLE: Parallel Multilevel Graph-
Partitioning Software – An Overview. Mesh Partitioning Techniques and Domain
Decomposition Techniques 10 (2007), 27–58. https://doi.org/10.4203/csets.17.2

[46] Stephen Williams and Michael Baxter. 2002. Icarus Verilog: Open-Source Verilog
More than a Year Later. Linux Journal 99 (2002), 3.

[47] Seiyang Yang, Jaehoon Han, Doowhan Kwak, Namdo Kim, Daeseo Cha, Junhyuck
Park, and Jay Kim. 2014. Predictive Parallel Event-Driven HDL Simulation with a
New Powerful Prediction Strategy. In Design, Automation & Test in Europe (DATE).
https://doi.org/10.7873/DATE.2014.329

[48] Yanqing Zhang, Haoxing Ren, and Brucek Khailany. 2020. Opportunities for RTL
and Gate Level Simulation Using GPUs. In International Conference on Computer-
Aided Design (ICCAD). Article 166. https://doi.org/10.1145/3400302.3415773

[49] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanović. 2020. Sonic-
BOOM: The 3rd Generation Berkeley Out-of-Order Machine. In Workshop on
Computer Architecture Research with RISC-V (CARRV), International Symposium
on Computer Architecture (ISCA).

Received 2022-10-20; accepted 2023-01-19

585

https://doi.org/10.1090/conm/588
https://doi.org/10.1145/185403.185424
https://doi.org/10.1145/185403.185424
https://doi.org/doi.org/10.1137/090769156
https://doi.org/10.1109/HOTCHIPS.2019.8875645
https://doi.org/10.1109/MM.2020.2997639
https://doi.org/10.1109/DAC18072.2020.9218632
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/978-0-387-09766-4_93
https://doi.org/10.1007/978-0-387-09766-4_93
https://doi.org/10.1109/TSE.1979.230182
https://doi.org/10.1145/1629911.1630056
https://doi.org/10.1145/1970353.1970363
https://doi.org/10.1145/3192366.3192404
https://doi.org/10.1145/2463209.2488884
https://doi.org/10.1145/3469379.3469385
https://doi.org/10.1145/3469379.3469385
https://doi.org/10.1006/jpdc.1996.0054
https://doi.org/10.1109/ICCAD.2017.8203780
https://doi.org/10.1109/ICCAD.2017.8203780
https://doi.org/10.1145/2830772.2830777
https://doi.org/10.1137/S1064827595287997
https://doi.org/10.1109/SC.1998.10018
https://doi.org/10.1109/SC.1998.10018
https://doi.org/10.1109/DATE.2011.5763280
https://doi.org/10.1109/TCAD.2013.2237769
https://doi.org/10.1109/TCAD.2013.2237769
https://doi.org/10.1007/978-3-540-27776-7_53
https://doi.org/10.1201/b19569
https://doi.org/10.1109/ICVD.2004.1260944
https://doi.org/10.1145/3545008.3545091
https://doi.org/10.1145/3445814.3446748
https://doi.org/10.1145/3445814.3446720
https://doi.org/10.1145/3445814.3446720
https://doi.org/10.1109/ICCAD.2011.6105404
https://doi.org/10.1109/ICCAD.2011.6105404
https://doi.org/10.1145/2749469.2750405
https://doi.org/10.1145/2749469.2750405
https://doi.org/10.1587/transinf.2017RCP0012
https://doi.org/10.1587/transinf.2017RCP0012
https://doi.org/10.1109/ICCAD.1993.580063
https://doi.org/10.1109/ICCAD.1993.580063
https://doi.org/10.1145/3297858.3304010
https://doi.org/10.1145/3297858.3304010
https://doi.org/10.1145/3529090
https://www.veripool.org/papers/Verilator_Modeling_UMass2017b_pres.pdf
https://www.veripool.org/papers/Verilator_Modeling_UMass2017b_pres.pdf
https://doi.org/10.4203/csets.17.2
https://doi.org/10.7873/DATE.2014.329
https://doi.org/10.1145/3400302.3415773

	Abstract
	1 Introduction
	2 Hardware Simulation Background
	3 Parallel Simulation Challenges
	4 Replication-Aided Graph Partitioning
	4.1 Exploiting Chronological Independence of Registers and Memories
	4.2 Generating the Intersection Hypergraph
	4.3 Simulation Cost Model (Node Weights)
	4.4 Using the Hypergraph Partitioning Result to Guide Replication

	5 Parallelization Approach
	5.1 Parallelizing with a Single Update per Cycle
	5.2 Optimizing the Memory Layout to Avoid False Sharing

	6 Evaluation
	6.1 Opportunity for Partitioning Design Graphs
	6.2 Replication Costs Are Worthwhile
	6.3 Performance & Superlinear Scalability
	6.4 Analysis to Understand Performance
	6.5 Profiling RepCut Reveals High Utilization
	6.6 Quantifying Workload Imbalance

	7 Related Work
	8 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization

	References

