ESSENT: A High-Performance RTL Simulator

Scott Beamer Thomas Nijssen

Krishna Pandian = Kyle Zhang

Computer Science & Engineering
University of California, Santa Cruz
Santa Cruz, CA, USA
{sbeamer, tnijssen, kpandian, kmzhang } @ucsc.edu

Abstract—RTL simulation is a critical tool for hardware de-
velopment, debugging, design space exploration, and verification.
The slow speed of hardware simulation can often be a bottleneck
for the design process, so any speed improvements could either
reduce design times or improve design quality. We overview
ESSENT, a high-performance RTL simulator available as open-
source. Not only does it contain novel optimizations that make it
typically faster than other software RTL simulators, the codebase
can serve as a foundation for simulation research.

Index Terms—simulation, open source, agile hardware design

I. INTRODUCTION

Simulation is an important tool in any hardware design
flow. Although there are many types of simulation, cycle-
accurate RTL simulation is the workhorse for hardware design,
debugging, design space exploration, and verification. Many
simulation methods are suitable for modest designs over small
time periods. As the simulation is scaled up in both space (i.e.
larger designs) and time (i.e. longer simulations), simulation
efficiency becomes critical. In this work, we overview Es-
sential Signal Simulation Enabled by Netlist Transformations
(ESSENT), a high-performance RTL simulator [4]. It excels at
simulation speed, and we are continuing to increase the scale
at which its acceleration techniques are beneficial.

ESSENT pioneers novel optimizations to accelerate simu-
lation and it is open source'. In this overview, we provide: a
background on simulation, a survey of ESSENT’s features, a
brief performance demonstration of ESSENT, and discuss its
applicability.

II. SIMULATION BACKGROUND

In this work, we find it helpful to represent hardware designs
as directed graphs. Each node represents a logic element
or state element, and each edge represents a wire. Thus, a
hardware design is a graph of elements (nodes) connected
by wires (edges). Simulating a single clock cycle is thus an
evaluation of the graph which consumes external inputs and
the values of its internal state elements to produce external
outputs and new values for its internal state elements. Longer
simulations result in more graph evaluations.

Quickly, simulation times can become problematic, so there
has been substantial prior work on accelerating simulation [6],
[7], [10], [19], [20]. Accelerating software simulation boils
down to reducing the work expended per simulated cycle.
Some of the first simulators created use an event-driven

Thttps://github.com/ucsc-vama/essent

A
Dynamic Event
Schedule Driven
)
@
0
£
[
o
3 ESSENT
(this work)
Static Full
Schedule Cycle
>
Active Portion Entire Design
Portion of Design Simulated (per cycle)
Fig. 1. ESSENT (this work) provides nearly the scheduling efficiency of

full-cycle simulation while simulating close to only the active portion of the
design (like event-driven simulation).

approach, in which they dynamically schedule nodes to be
evaluated as changes propagate through the graph (hardware
design). If node evaluations are scheduled carelessly, it can
result in a node being evaluated multiple times per simu-
lated cycle, which is wasteful. A more efficient schedule
is possible in which each node is evaluated at most once
per simulated cycle, but it requires the design graph to be
acyclic. With an acyclic graph, one can use an algorithm
such as topological sort to produce an efficient schedule. To
clarify, only combinational loops are problematic in terms of
creating cycles in the design graph, as feedback paths through
state elements are broken naturally by synchronizations via
clock cycles. Combinational loops are typically small, and
the strongly connected components that represents them can
be collapsed into a supernodes, making the overall graph
acyclic. Levelization is a practical method akin to breadth-first
search (BFS) to order node evaluations to prevent unnecessary
repeat evaluations [21], [23]. Even with a more efficient
schedule, event-driven simulators expend a great deal of effort
in overhead from scheduling. They are continuously creating
events, prioritizing them, and choosing which event to evaluate
next.

Full-cycle simulators obviate the scheduling overhead from

https://github.com/ucsc-vama/essent

event-driven simulation by performing all scheduling statically
in advance [5], [9], [20]. Precomputing the schedule once is
possible since hardware design topologies do not change mid-
simulation. A full-cycle simulator effectively inlines the entire
design and turns it into straight-line code. This code can be
compiled to make a simulator specialized for the target design.
Executing that code will typically incur few bottlenecks in
the host processor’s backend, but it can often challenge the
processor’s frontend with poor temporal locality for instruc-
tions [3]. As designs get bigger, so does the simulator program
binary and thus the reuse interval for a given instruction. The
static schedule of a full-cycle simulator evaluates every node
in the graph every simulated cycle as it is unaware of what
has changed.

The prevailing simulation approaches (event-driven and full-
cycle) present an interesting tradeoff (Figure 1). Event-driven
simulators have tremendous scheduling overhead, but they
only perform work on the active portion of the design. Full-
cycle simulators eliminate the scheduling overhead, but they
obliviously simulate the entire design. Even within “active”
hardware components, most signals rarely change, so the
inability to skip over inactive portions is a significant in-
efficiency. Many of the fastest simulators today use a full-
cycle approach as typically removing the scheduling overhead
is more beneficial than reducing the fraction of the design
simulated [20]. Prior work attempts to create hybrids to reduce
both scheduling overheads and the fraction of the design
simulated. ESSENT is such a hybrid, and it improves on
similar prior work in a number of ways.

III. ESSENT

ESSENT is an open-source RTL simulator generator [3],
[4]. Given a design in the FIRRTL [14] format, it produces
C++ code that can be compiled to produce a high-performance
simulator for the design. It reduces scheduling overhead by
performing the scheduling once statically at compile time. It
reduces the fraction of the design simulated by dynamically
skipping over inactive portions of the design. Its key research
contributions are its low overhead techniques that enable it to
skip over inactive portions of the design.

If the inputs to an inactive hardware component do not
change, the outputs can be reused without re-evaluating the
entire component. This ability to reuse is always true for
acyclic combinational logic, but it can also be true for se-
quential logic with some caveats. Thus, instead of always
evaluating a component, it is evaluated conditionally only if
its inputs or internal state has changed. Performing activity
detection and reuse on a node granularity is impractical as
the overhead it introduces negates its benefit. Naturally, the
solution is to coarsen the granularity at which the reuse is
performed to amortize the overheads. Instead of checking the
inputs to a single node (e.g. an adder), we check if the inputs to
dozens or hundreds of components has changed. Coarsening
the hardware design is equivalent to partitioning the design
graph.

O Evaluated

O Skipped

Conditional

¥0e
4

Fig. 2. Example use of dynamic don’t cares for a multiplexer. ESSENT at
compile-time recognizes the shaded portion feeding in way 1 as the maximum
portion of the design that can be skipped if the other way (way 0) is selected.

To ensure an efficient schedule is possible in which each
node is evaluated at most once per simulated cycle, the graph
must be acyclic. Unfortunately, even if starting with an acyclic
graph, most partitionings will be cyclic [11]. What is needed
is an acyclic partitioning, and regrettably there has been far
less research into acyclic graph partitioning than there has been
into general graph partitioning [16]. The lack of a high-quality,
easy-to-use acyclic partitioner hindered prior hybrid simulator
attempts [7], [10], [17]. To deal with shortcomings of their
partitioners, prior work had various coping strategies such as:
replicating parts of the design to break cycles, re-evaluating
components that are cyclic, and excluding state elements from
partitioning. Additionally, sometimes the challenges of acyclic
partitioning are exposed to the user in the form of: complicated
design-specific parameters, forcing the user to write their own
activity detection code, or forcing the user to partition the
design themself.

ESSENT’s key enabling technology is its novel acyclic
partitioner. With it, it not only enjoys the performance benefit
of conditionally evaluating coarsened partitions at most once
per cycle, but it is also able to automate the partitioning.
Since ESSENT acts as a code generator rather than a simple
library, it is more able to automate and tailor the result to the
target design. The ESSENT framework partitions the design as
well as automatically generating the code necessary to detect
activity and reuse outputs. ESSENT’s partitioner only has a
single parameter that corresponds to coarseness, and the fastest
parameter value is largely insensitive to the input design [4].
Thus, a user can tune ESSENT once for their platform and
reuse that parameter for a variety of designs. Since most users’
platforms are relatively similar, they can probably use the
default parameter value without even needing to worry about
tuning it.

In addition to its primary optimization of dynamically
skipping over inactive portions of the design, ESSENT has
other optimizations. It is able to recognize dynamic don’t cares

Verilog FIRRTL FIRRTL

Design Lines Nodes Edges

rocketl6 112,167 26,554 47,290

rocketl8 328,367 71,545 123,226

rocket20 246,589 70,349 120,236
TABLE I

OPEN-SOURCE PROCESSOR DESIGNS USED FOR EVALUATION

in which the value of a signal will not impact the simulation,
and it dynamically skips over the unneeded portion. These
dynamic don’t cares frequently occur for unselected ways of
multiplexers (Figure 2) as well as inputs to registers who
currently have writes disabled. ESSENT also includes branch
hints for the compiler in its generated code [3]. To support
our generated code, we develop a C++ template library for
arbitrary width digital signals. To represent signals internally,
it uses appropriately sized storage and it is crafted to allow
the compiler to optimize for multi-word arithmetic.

ESSENT is able to implement sophisticated optimizations
with moderate developer effort by leveraging the productivity
of the FIRRTL library as well as the Scala language [14]. The
FIRRTL library not only provides a means to load designs
in the FIRRTL intermediate representation, but it also pro-
vides many useful functions for processing and manipulating
hardware designs. With those functionalities provided, we are
able to focus our development efforts on aspects unique to
simulation and our optimizations without needing to spend
much effort on infrastructure to get started. The Scala language
provides great productivity benefits from its object-oriented
and functional language features as well as its safety. Even
though ESSENT is written in Scala, it generates C++ that can
be compiled to fast native code for a fast simulator.

ESSENT consumes designs in the FIRRTL format. FIRRTL
is most commonly produced by designs written in Chisel [2],
but other flows are possible. There are other languages that
serve as frontends to produce FIRRTL, such as Spatial [13]
and PyRTL [8]. For components written in Verilog, there are
also tools to convert it to FIRRTL such as Yosys [24] and
LiveHD [22].

IV. PERFORMANCE DEMONSTRATION

We provide a brief performance comparison of ESSENT at
various optimization levels compared to Verilator. We encour-
age the reader to consult prior publications for more thorough
comparisons or performance analyses [3], [4], as the purpose
of this comparison is to provide more recent data. We use an
Intel 8-core 3.6 GHz 17-7820X (Skylake) which has 11 MB of
L3 cache and 64 GB of DRAM to perform our experiments.
For designs, we use Rocket Chip [1] from different years
(Table I). Over time, the default configuration has changed
and grown, so this provides some variety in scale. We animate
the processors by running the dhrystone benchmark, and our
prior work demonstrates the variance from multiple software
workloads is moderate [4].

ESSENT accepts a command-line flag for optimization
levels much like a compiler, with —O0 performing no optimiza-
tions and -03 performing the most aggressive optimizations.

M Verilator]
8 H Il ESSENT -00 4
[ESSENT -O01
6 [ESSENT -02
2 " [|3J ESSENT -03 7
e
()
3 4
&4t J
21 4
rocketl6 rocketl8 rocket20
Design

Fig. 3. Speedup of various ESSENT optimization levels relative to Verilator.

Without optimizations enabled, ESSENT is a straightforward
full-cycle simulator, and its performance is similar to Verilator.
The first level of optimization (-01) removes long chains
of wires without intervening gates and it streamlines the
register update process. The next level of optimization (-02)
uses conditional execution to avoid dynamic don’t cares. The
highest level of optimization (-03) uses our optimization to
coarsely skip over inactive portions of the design. We expose
the optimization levels to the user for two reasons. First,
higher optimization reduce simulation time at the expense of
increased compile time, but users may want to weigh that
tradeoff for their usage scenario. Second, for users keen to
examine and even modify the code generated by ESSENT,
they may appreciate the simplicity of less optimized code.

In general, the benefit of ESSENT’s optimizations becomes
more apparent for larger designs. On smaller designs (e.g.
rocket16), the host processor’s frontend can learn the branch-
ing behavior and easily cache the instructions of the simulator
program. As the design grows larger, so does its corresponding
simulator program, and it will place more strain on the
frontend. Eventually it will overflow the frontend, and the
host processor will be executing at a significantly reduced rate.
The speedup for rocket18 stands out as the design happens to
straddle a qualitative size boundary. On Verilator, it overflows
the frontend, but with ESSENT’s optimizations, it can mostly
fit, which causes the stark performance difference. For larger
designs, the simulators produced by ESSENT will overflow
the host processor’s frontend, but the optimizations will still
reduce the load and thus provide a speedup.

V. FUTURE WORK

ESSENT is available open source with a BSD license.
Along with the code, we provide usage examples, and are in
the process of creating and releasing more examples. ESSENT
benefits from regression tests from past designs and they are
executed frequently via continuous integration (CI). We are in
the process of releasing our CI infrastructure to ease others
testing efforts.

We are currently working on modest improvements to our
partitioning process and the structure of our emitted code.
We believe further refinements to our approach will allow
us to continue to reduce the effective fraction of the design
simulated and thus produce additional speedups. Furthermore,
more analysis of how our hardware signals are handled by the
compiler may allow us to improve code generation and mem-
ory layouts. Since this work initially began, we are delighted
by the recent release of an open-source acyclic partitioner [11].
We are keen to test it out within our framework and consider its
adoption or ways to improve our partitioner based on insights
from it.

Due to the ubiquity of multicore processors, multicore
parallelization is a clear opportunity to increase simulation
speed. We are pursuing this path, but we find multiple caveats
worth noting. First, although parallelization can reduce the
time of a single simulation, it may hinder overall throughput.
In many situations, there are many simulation tasks to be run,
such as extensive testing or design space exploration. Running
many simulations in parallel instead of a few parallelized
simulations may yield better throughput at a system level.
Second, parallelization is likely to be most beneficial for large
designs. Cycle boundaries are a natural synchronization point
between threads, as prior work using optimistic concurrency
for hardware simulation found rollbacks to be frequent [15].
Due to the high simulation rates ESSENT is capable of, the
designs presented in this work are likely to be synchronization-
limited if parallelized. Thus, target designs will need to be
significantly larger (perhaps greater than one million FIRRTL
nodes) in order in order to enjoy reasonable parallel speedups.

VI. DISCUSSION

In our work, we focus on software simulation, and we
view hardware-accelerated simulation as a complementary
alternative [12], [18]. Hardware-accelerated simulation can
provide astronomical simulation rates, but it comes at the
cost of higher equipments costs and start up times. For many
situations, software simulation is more practical and this is
often true within open-source projects which may have less
resources. We expect many projects will continue to use both
software and hardware-accelerated simulation depending on
their needs and resources. We hope to be a common choice
for software simulation.

As an open-source tool, we envision multiple communities
that can benefit from ESSENT. First, it is an open-source sim-
ulator faster than other software simulators, so designers can
plug it in and spend less time waiting for simulation results.
Alternatively, with the efficiency improvement, they could
perform more exhaustive simulation or verification. Second,
ESSENT could serve as a great platform for researchers. Due
to the productivity advantages of Scala as well as the FIRRTL
library, ESSENT is an order of magnitude fewer lines of code
than comparable simulators it outperforms. With that concise
expressiveness, it is easier to use ESSENT as a foundation for
pioneering new simulation techniques or augment a simulation
in a desired way.

VII. ACKNOWLEDGMENTS

This material is based upon work supported by, or in part
by, the Army Research Laboratory and the Army Research
Office under contract/grant W911NF1910466.

REFERENCES

[1] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer,
et al. The rocket chip generator. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[2] Jonathan Bachrach, Huy Vo, Brian Richards, et al. Chisel: constructing
hardware in a scala embedded language. DAC, pages 1216-1225, 2012.

[3] Scott Beamer. A case for accelerating software RTL simulation. /EEE
Micro, 2020.

[4] Scott Beamer and David Donofrio. Efficiently exploiting low activity
factors to accelerate RTL simulation. DAC, 2020.

[5] Richard Buchmann and Alain Greiner. A fully static scheduling
approach for fast cycle accurate SystemC simulation of MPSoCs.
Internatonal Conference on Microelectronics, pages 101-104, 2007.

[6] Colin C Charlton, D Jackson, and Paul H Leng. Lazy simulation of
digital logic. Computer-Aided Design, 23(7):506-513, 1991.

[7] Debapriya Chatterjee, Andrew DeOrio, and Valeria Bertacco. Event-
driven gate-level simulation with GP-GPUs. DAC, page 557, 2009.

[8] John Clow, Georgios Tzimpragos, Deeksha Dangwal, Sammy Guo,
Joseph McMahan, and Timothy Sherwood. A pythonic approach
for rapid hardware prototyping and instrumentation. In International
Conference on Field Programmable Logic and Applications (FPL),
2017.

[91 Robert S French, Monica S Lam, Jeremy R Levitt, and Kunle Olukotun.
A general method for compiling event-driven simulations. In DAC, pages
151-156. ACM, 1995.

[10] JP Grossman, Brian Towles, Joseph A Bank, and David E Shaw. The
role of Cascade, a cycle-based simulation infrastructure, in designing
the Anton special-purpose supercomputers. DAC, 2013.

[11] Julien Herrmann, M Yusuf Ozkaya, Bora Ucar, Kamer Kaya, and Umit V

Catalyurek. Multilevel algorithms for acyclic partitioning of directed

acyclic graphs. SIAM Journal on Scientific Computing, 41(4):A2117-

A2145, 2019.

Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon

Amid, et al. Firesim: FPGA-accelerated cycle-exact scale-out system

simulation in the public cloud. In International Symposium on Computer

Architecture (ISCA), pages 29-42. IEEE Press, 2018.

David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang,

et al. Spatial: A language and compiler for application accelerators.

Conference on Programming Language Design and Implementation

(PLDI), 53(4):296-311, 2018.

Patrick S Li, Adam M Izraelevitz, and Jonathan Bachrach. Specification

for the FIRRTL language. EECS Department, University of California,

Berkeley, Tech. Rep. UCB/EECS-2016-9, 2016.

Yukinori Matsumoto and Kazuo Taki. Parallel Logic Simulation on

a Distributed Memory Machine. European Conference on Design

Automation, 1992.

Orlando Moreira, Merten Popp, and Christian Schulz. Graph partitioning

with acyclicity constraints. arXiv.org, April 2017.

Daniel Gracia Pérez, Gilles Mouchard, and Olivier Temam. A new opti-

mized implementation of the SystemC engine using acyclic scheduling.

DATE, 2004.

Eric Schkufza, Michael Wei, and Christopher J Rossbach. Just-in-

time compilation for verilog: A new technique for improving the fpga

programming experience. In ASPLOS, pages 271-286, 2019.

Steven P Smith, M Ray Mercer, and Bishop Brock. Demand driven

simulation: BACKSIM. DAC, 1987.

[20] Wilson Snyder. Verilator: Speedy reference models, direct from RTL.

Presentation to University of Massachusetts Amherst, 2017.

Laung-Terng Wang, Nathan E Hoover, Edwin H Porter, and John J Zasio.

SSIM: A software levelized compiled-code simulator. DAC, 1987.

Sheng-Hong Wang, Rafael Trapani Possignolo, Haven Blake Skinner,

and Jose Renau. LiveHD: A productive live hardware development flow.

IEEE Micro, 40(4):67-75, 2020.

[23] Zhicheng Wang and Peter M Maurer. LECSIM: a levelized event driven

compiled logic simulation. DAC, 1990.

Claire Wolf. Yosys open synthesis suite. http://www.clifford.at/yosys/,

2016.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[21]

[22]

[24]

	Introduction
	Simulation Background
	ESSENT
	Performance Demonstration
	Future Work
	Discussion
	Acknowledgments
	References

