
Research Statement
Scott Beamer

Despite the end of Moore’s Law on the horizon, there is no end in sight to the rapid growth in the volume
of data and applications to make use of it. To use that data, it must be stored, accessed, and moved, and
this communication is often more demanding than the computation on that data. Worse yet, inefficient
communication can leave a system woefully underutilized, which increases costs to the point of limiting the
amount of data that can be practically processed. My research attacks this problem by enabling efficient com-
munication, and I leverage my background in computer architecture and systems to consider both hardware
and software perspectives to develop the most efficient solutions. My approach is able to greatly improve
communication efficiency by creating novel algorithms, holistic system designs, and specialized hardware
architectures. Such a multifaceted approach is necessary, as achieving the best communication efficiency
will require rethinking the hardware-software interface.

Communication efficiency is paramount for effective data-intensive computing. First, improving commu-
nication efficiency can improve performance, particularly for communication-bound workloads. Moving
less data and moving data shorter distances can save substantial amounts of energy, as moving data typ-
ically consumes orders of magnitude more energy than a single computation on it. For many systems,
off-chip bandwidth is one of the most expensive resources. Therefore, building a system that uses avail-
able bandwidth more effectively will reduce the cost and size of a system. These benefits from improved
communication efficiency will also translate into enhancements in application quality by enabling the use
of larger datasets as well as more complex algorithms. As Moore’s Law shows signs of slowing down,
improving communication efficiency will be critical to reconciling the growing disparity between rapidly
growing data processing demands and sluggishly increasing transistor budgets.

To improve communication efficiency, one can either reduce the amount of communication (move less data)
or increase the effective rate of communication (utilize more bandwidth). My research applies both tech-
niques, and I have improved communication efficiency via optimized algorithms and redesigned hardware.
I reduced communication for graph algorithms by designing a locality-enhancing transformation as well as
a novel breadth-first search algorithm. I increased the effective rate of communication for graph algorithms
by identifying and ameliorating bottlenecks constraining memory bandwidth. I also investigated how to
best utilize a new interconnect technology (silicon photonics) to design systems with improved perfor-
mance, increased energy efficiency, and improved programmability. I am currently developing methods to
accelerate digital logic simulation by improving its communication efficiency with my insights into efficient
graph algorithm execution. I am excited to bring my communication-centric approach to more application
areas by designing new algorithms and architectures to improve their communication efficiencies.

Using Graph Algorithms to Understand and Improve Communication

Many workloads can benefit from improved communication efficiency, but for my dissertation research, I fo-
cused on improving communication efficiency for graph processing for two reasons. First, graphs are a great
abstraction to represent many types of data and improved graph processing performance will benefit its
many applications. Second, the connection-centric nature of graph processing results in a communication-
centric workload that is representative of other data-intensive workloads. Typically within graph algo-
rithms, communication is guided by the graph topology, so by examining a variety of algorithms and graph
topologies, we can examine a variety of communication patterns.



Scott Beamer – Research 2

Direction-optimizing Breadth First Search
Breadth-first search (BFS) is a fundamental traversal order used within many graph algorithms. A conven-
tional BFS traversal examines every edge in a graph, but by applying a communication-centric perspective,
I designed the direction-optimizing BFS algorithm which is often able to leave many edges unexamined [5].
The key insight is that in low-diameter graphs such as social networks, vertices typically have many parents.
These redundant parents cause redundant communication, since a correct BFS traversal only needs to find
a single parent for each vertex. By performing the traversal in the reverse direction (bottom-up instead of
top-down), my algorithm is able to skip edge examinations for vertices once they have found parents. By
drastically reducing the number of edges examined which in turn reduces the amount of communication
(often by an order of magnitude), my algorithm obtains impressive speedups. This BFS innovation shows
that there can be more to optimizing communication than simply moving a blob of data quicker. In this
case, leveraging insight into how the data will be used led to an algorithm that dynamically determines
which subset of the data it needs.

I first introduced the direction-optimizing BFS algorithm within the Graph 500 competition [3]. Graph 500

ranks the world’s supercomputers by their BFS traversal rate, much like the Top 500 competition ranks the
world’s supercomputers by their ability to perform dense linear algebra. Despite only placing 17th, I had
used only a single quad-socket server and outperformed clusters of hundreds of servers, Cray XMTs (super-
computer specialized for irregular applications), and Convey HCs (reconfigurable computer). Such a small
system outperforming such large systems demonstrates the potential for communication optimizations to
substantially improve efficiency. For low-diameter graphs, the direction-optimizing BFS algorithm has be-
come essential due to its performance advantages. It has been implemented by many graph frameworks
and Graph 500 contestants, including at least the top 30 finishers in November 2017’s Graph 500 rankings.

I collaborated with Aydın Buluç to extended my algorithm to operate on distributed memory. With careful
design, we preserved the algorithm’s communication efficiency in order to transmit an order of magni-
tude less data on the network to obtain significant speedups [8]. The efficiency of our implementation
encouraged us to scale out, and by using one hundred thousand cores from the Hopper supercomputer,
our implementation traversed a graph with half a trillion edges in only a few seconds.

Workload Characterization
A closer analysis of my BFS algorithm revealed that although it obtains its speedup by performing less com-
munication by traversing fewer edges, it is less communication efficient for each edge actually traversed. To
understand what limits communication efficiency, I thoroughly characterized graph processing workloads
(Best Paper Award from IISWC) [6]. With a diverse suite of different codebases, graph kernels, and input
graphs, I used hardware performance counters to identify and quantify architectural bottlenecks for graph
processing workloads. Contrary to the popular belief that graph algorithms have a random memory ac-
cess pattern and are thus memory bandwidth-bound, I found that most of these workloads actually enjoy
moderate cache hit rates and are unable to fully utilize the platform’s memory bandwidth. Their memory
bandwidth utilization is most frequently limited by the processor’s inability to generate a sufficient num-
ber of concurrent memory requests. In general, I observed the processor is frequently idle and is able to
underutilize its compute throughput and memory bandwidth simultaneously. Fortunately, these results
suggest that by improving utilization, a new processor architecture or even a new algorithm can improve
performance without requiring a costly new memory system.

GAP Benchmark Suite
While creating the workload for analysis, I found it difficult to compare much of the research on improv-
ing graph processing performance due to the great diversity in evaluation methodologies, as there is no
standard for which graph problems to solve, which graphs to use for input, or how to actually conduct the
experiments. Like many other subfields within systems, being able to reliably perform quantitative compar-
isons is essential. I made the GAP Benchmark Suite to solve this problem by standardizing graph processing
evaluations [4]. The benchmark specifies the requirements for the evaluation, so any implementation that



Scott Beamer – Research 3

is compliant can now be correctly compared. As an exemplar of the benchmark specification, I also re-
leased high-performance reference code, which for some of the graph kernels, is also the fastest available.
The performance advantages are primarily due to communication efficiency optimizations guided by the
characterization work. Since its release, the benchmark has been used for evaluations in papers in top con-
ferences (ASPLOS, ISCA, PACT, and SPAA) as well as being highlighted in the citation for my dissertation
award from SPEC [2].

Propagation Blocking
A stream of memory requests with poor spatial locality is a common inefficiency for graph processing
workloads. When one of these memory requests misses the cache, it triggers a full cache line transfer
when it will use only a single word, which wastes both memory bandwidth and energy. To mitigate this
communication inefficiency, I developed propagation blocking, an algorithmic transformation that improves
spatial locality by using additional memory capacity to semi-sort the data. Although propagation blocking
requires more arithmetic operations, it improves spatial locality which significantly reduces the amount of
memory communication to provide a net speedup. I used PageRank as a kernel to explain and demonstrate
the technique (Best Paper Award from IPDPS), but it can be applied to other graph algorithms and more
generally, anything that performs a sparse all-to-all transfer [7].

Domain-specific Language for Graph Algorithms
To make it easy to concisely express graph algorithms without loosing performance, I made GBSP, a simple
domain-specific language (DSL) for graph applications [12]. At runtime, GBSP automatically translates the
DSL into high-performance parallel native code and executes it. Under the hood, GBSP uses propagation
blocking for efficient communication to deliver great performance. GBSP is embedded within Python, so
it is easy to use and can integrate with the large volume of existing Python code. GBSP demonstrates
that communication optimizations can be made more accessible by including them transparently within a
framework.

Using Silicon Photonics to Build Efficient Interconnects

Silicon photonics is an emerging technology with promising communication applications. I used my archi-
tecture training to help VLSI and device experts at MIT who were building photonic test chips to decide the
best way to utilize photonics for both inter-chip communication and intra-chip communication to improve
overall system performance. Photonics is an interesting opportunity for architects, since its advantages of
bandwidth density, distance insensitivity, and energy efficiency alter many design tradeoffs, often necessi-
tating much more novel designs. Since we were working with device models for a future technology, we
swept the simulated device parameters to motivate which device performance targets would be necessary
in order to merit the use of photonics.

We designed interconnects for various parts of the system, including within a single chip [10], between
multiple sockets [1], and between a socket and memory [9]. In addition to increasing bandwidth and im-
proving energy efficiency, our new interconnect designs bring other benefits to the system. Our multisocket
interconnect leveraged the high bandwidth possible with photonics to provide uniform memory access in
a multisocket system (not NUMA) to simplify performance programming and enable disintegrating large
chips for a cost reduction. Our memory interconnect allows for greatly increased memory capacity by tak-
ing advantage of the distance insensitivity of photonics and our novel optical power guiding technique.
In the years since we designed our optical memory link, the device experts succeeded in fabricating a test
chip in which a processor operates correctly using optically connected memory, and it was such a radical
breakthrough that it was published in Nature [13].



Scott Beamer – Research 4

Future Work

I am thrilled to continue improving communication efficiency within hardware and software systems, and I
am eager to collaborate with others to bring my communication-centric approach to more application areas
and to utilize emerging technologies such as photonics, 3D integration, and non-volatile memory.

Accelerating Architecture Simulation via Communication Optimization
I am currently combining my expertise in accelerating graph processing with my interest in architecture to
speed up digital logic simulation. Software simulation is a critical tool for hardware designers, but the slow
rate of simulation currently bottlenecks the design process by limiting the number of designs that can be
explored or the time simulated for each design. I recast logic simulation as a graph evaluation problem, and
by applying my approach, I improved its communication efficiency to achieve substantial speedups. My
simulation tool exploits the observation that large parts of hardware designs are often inactive, so it only
simulates active portions of the design. Normally, using conditional execution in this context introduces too
much overhead, but I developed a novel acyclic graph partitioning technique to make it profitable. A pub-
lication detailing my project’s contributions is currently under review, and I am preparing the code for an
open-source release. This project has unearthed a wealth of potential communication-inspired optimizations
to further accelerate logic simulation.

Accelerating Bioinformatics via Communication Optimization
Bioinformatics will benefit substantially from improved communication efficiency, and that efficiency will
enable processing larger datasets and tackling more complex problems. Bioinformatics not only has to
process massive amounts of data, but in practice, the computation is often bottlenecked by inefficient com-
munication, even within a single system. By leveraging techniques and tools developed for my graph
processing workload characterization, I will identify the most impactful sources of communication ineffi-
ciencies. With those insights, I will design new blocking techniques or methods of exploiting parallelism to
substantially improve communication efficiency for bioinformatics workloads. Those optimizations could
be manually applied to library functions, but it will be more useful to embed those optimizations within an
optimizing compiler for a DSL. This will allow users of the DSL to express new algorithms but still gain the
benefits of the optimizations.

Communication-Efficient Architecture
To cope with Moore’s Law slowing down and providing fewer additional transistors, computer architects
are increasingly improving performance via hardware specialization to better utilize those transistors. In
many cases, the benefit from specialization will not come solely from increasing raw compute throughput,
but instead from tailoring the memory hierarchy to the application to improve communication efficiency.
Even the renowned compute throughput of Google’s Tensor Processing Unit (TPU) is enabled by its ef-
ficient communication abilities and how well matched they are to its application [11]. For data-intensive
applications, communication should displace compute as the primary concern for computer architects.

In contrast to a conventional hardware design process which first considers the computational needs of the
target workload and then designs a memory system to match, I will put my communication-centric per-
spective into practice by designing for efficient communication first. To design for efficient communication,
I will determine the minimum amount of data movement required to solve the problem, how local memo-
ries should be used to achieve that data movement minimum, how the system can most efficiently generate
memory requests to utilize the memory bandwidth, and finally the compute necessary to keep up with the
flow of data. This design process will yield communication-efficient accelerators for specific applications,
but to support more workloads, I also want to design a more flexible architecture that achieves nearly the
same communication efficiency.



Scott Beamer – Research 5

To achieve reusability and communication efficiency, I will design a reconfigurable spatial architecture.
Unlike a conventional general-purpose processor which performs computation temporally by executing in-
structions, this novel architecture will perform computation spatially by using different hardware blocks. To
obtain reusability, the architecture will be able to reconfigure both the blocks and the connections between
them. By decomposing communication patterns into communication primitives, the user will be able to
construct efficient communication streams by mapping the primitives onto the hardware blocks. In contrast
to prior research on coarse-grained reconfigurable architectures, my focus is on enabling efficient communi-
cation more so than increasing compute density. I will use graph algorithms and bioinformatics workloads
to drive its development, but more generally, the architecture will excel at data-intensive workloads.

References

[1] S. Beamer. Designing multisocket systems with silicon photonics. Master’s thesis, University of Cali-
fornia, Berkeley, 2009.

[2] S. Beamer. Understanding and Improving Graph Algorithm Performance. PhD thesis, University of
California, Berkeley, 2016.

[3] S. Beamer, K. Asanović, and D. Patterson. Searching for a parent instead of fighting over children: A
fast breadth-first search implementation for Graph500. Technical Report UCB/EECS-2011-117, EECS
Department, University of California, Berkeley, 2011.

[4] S. Beamer, K. Asanović, and D. A. Patterson. The GAP benchmark suite. arXiv:1508.03619, 2015.

[5] S. Beamer, K. Asanović, and D. A. Patterson. Direction-optimizing breadth-first search. Proceedings of
the International Conference for High Performance Computing, Networking, Storage and Analysis (SC), 2012.

[6] S. Beamer, K. Asanović, and D. A. Patterson. Locality exists in graph processing: Workload characteri-
zation on an Ivy Bridge server. International Symposium on Workload Characterization (IISWC), 2015.

[7] S. Beamer, K. Asanović, and D. A. Patterson. Reducing pagerank communication via propagation
blocking. International Parallel & Distributed Processing Symposium (IPDPS), 2017.

[8] S. Beamer, A. Buluç, K. Asanović, and D. A. Patterson. Distributed memory breadth-first search revis-
ited: Enabling bottom-up search. Workshop on Multithreaded Architectures and Applications (MTAAP), at
the International Parallel & Distributed Processing Symposium (IPDPS), 2012.

[9] S. Beamer, C. Sun, Y.-J. Kwon, A. Joshi, C. Batten, V. Stojanović, and K. Asanović. Re-architecting dram
memory systems with monolithically integrated silicon photonics. International Symposium on Computer
Architecture (ISCA), 2010.

[10] A. Joshi, C. Batten, Y.-J. Kwon, S. Beamer, I. Shamim, K. Asanović, , and V. Stojanović. Silicon-photonic
clos networks for global on-chip communication. International Symposium on Networks-on-Chip, 2009.

[11] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers, et al. In-datacenter performance analysis of a tensor processing unit. In International
Symposium on Computer Architecture (ISCA). ACM, 2017.

[12] S. Kamil, D. Coetzee, S. Beamer, H. Cook, E. Gonina, J. Harper, J. Morlan, and A. Fox. Portable
parallel performance from sequential, productive, embedded domain-specific languages. Symposium
on Principles and Practice of Parallel Programming (PPoPP), 2012.

[13] C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline,
R. R. Avizienis, S. Lin, et al. Single-chip microprocessor that communicates directly using light. Nature,
528(7583):534–538, 2015.


