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Abstract—Reducing communication is an important ob-
jective, as it can save energy or improve the performance
of a communication-bound application. The graph algorithm
PageRank computes the importance of vertices in a graph,
and it serves as an important benchmark for graph algorithm
performance. If the input graph to PageRank has poor locality,
the execution will need to read many cache lines from memory,
some of which may not be fully utilized. We present propagation
blocking, an optimization to improve spatial locality, and we
demonstrate its application to PageRank. In contrast to cache
blocking which partitions the graph, we partition the data
transfers between vertices (propagations).

If the input graph has poor locality, our approach will
reduce communication. Our approach reduces communication
more than conventional cache blocking if the input graph
is sufficiently sparse or if number of vertices is sufficiently
large relative to the cache size. To evaluate our approach, we
use both simple analytic models to gain insights and precise
hardware performance counter measurements to compare im-
plementations on a suite of 8 real-world and synthetic graphs.
We demonstrate our parallel implementations substantially
outperform prior work in execution time and communication
volume. Although we present results for PageRank, propaga-
tion blocking could be generalized to SpMV (sparse matrix
multiplying dense vector) or other graph programming models.

I. INTRODUCTION

The bounty of transistors provided by Moore’s Law has
enabled increased computational speed and throughput, but
total communication bandwidth has failed to keep up. As
a consequence, some low-arithmetic intensity workloads are
often bottlenecked by communication to memory on today’s
platforms. For these communication-bound workloads, the
only way to improve performance is to either increase
their effective memory bandwidth or decrease the amount
of communication. Reducing communication can also save
energy, as moving data consumes more energy than the
arithmetic operations that manipulate it [1].

The amount of memory communication needed to execute
a graph processing workload is a function of many things
including: the algorithm, the cache size, the graph size, the
graph layout, and the software implementation. To reduce
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communication, prior work examined improving the graph
layout or reordering the computation to increase locality, and
these optimizations are often beneficial. However, there are
some graphs that are less amenable to layout or reordering
transformations. Low-diameter graphs, such as social net-
works, are often such stubborn graphs with low locality.

In this work, we present propagation blocking, an op-
timization that improves spatial locality of low-locality
graph workloads. By improving the spatial locality of a
workload, our optimization accelerates the workload by
reducing the amount of memory communication. Performing
propagation blocking adds additional computation, but for a
communication-bound workload, the benefit from improving
spatial locality makes this tradeoff beneficial.

We select PageRank to evaluate propagation blocking,
since it is often communication-bound due to its low arith-
metic intensity. The PageRank algorithm was initially used
to determine the popularity of webpages in order to assist
web search algorithms, but it has since proven to be a
useful benchmark. PageRank is an application of the linear
algebra Sparse Matrix Multiplying Dense Vector (SpMV)
kernel, and our propagation-blocking optimization can also
be applied to SpMV.

We evaluate propagation blocking applied to PageRank
on a suite of eight real-world and synthetic graphs using
hardware performance counter measurements. Compared
to our baseline implementation, on the seven low-locality
graphs, our new approach reduces communication by 1.5 –
2.9× (2.3 average) and improves performance by 1.1 – 2.7×
(1.8 average). On the one high-locality graph, propagation
blocking hurts performance and communication efficiency
by less than 5%. We validate our performance results by
demonstrating our baseline substantially outperforms prior
work, and by implementing a high-performance cache block-
ing implementation for comparison. We evaluate propagation
blocking applied to PageRank, but it could also be applied
to other graph algorithms or even SpMV, and we discuss its
applicability to graph programming models in Section IX.
Propagation blocking is typically advantageous to conven-
tional cache blocking for graphs that are sufficiently large
and sparse.



II. BACKGROUND ON PAGERANK

PageRank [2] has emerged as a popular graph benchmark
as it exposes many of the challenges of graph processing
while still being simple enough to ease analysis and imple-
mentation [3]. PageRank determines the “popularity” of a
vertex by summing the scaled popularities of the vertices
that point to it. This recurrence often results in cyclic
dependencies, but as long as the graph is aperiodic, the
scores will converge [4]. PageRank typically iterates until the
scores converge within a specified tolerance of a fixed point.
PageRank scores can also be computed or approximated by
other techniques including spectral methods, but in this work
we focus on the iterative method.

The PageRank score for a vertex u is (d = 0.85):

PR(u) =
1− d

|V |
+ d

∑
v∈N−(u)

PR(v)

|N+(v)|

At the core of this computation is the propagation of a
vertex’s score PR(v) scaled by its out degree |N+(v)|
to the vertex u it points to. In other words, a vertex’s
score PR(u) is the sum of the contributions (scaled scores)
from its incoming neighbors N−(u). In our discussion of
implementing PageRank, we focus on the propagation of
scaled scores between vertices as the other multiplications
or additions are on scalar or on often reused values.

We perform much of our analysis of PageRank from the
graph algorithm perspective, but to ease some explanations,
we sometimes take the sparse linear algebra perspective,
where the input graph can be viewed as a sparse adjacency
matrix A such that each non-zero element Aij represents
an edge from vertex i to vertex j. The propagation and
reduction of contributions in PageRank is an application of
SpMV to AT . There are two restrictions on SpMV within
PageRank not present in generalized SpMV. First, the matrix
A must be square since the rows and columns represent the
same set of vertices. Second, the matrix is binary (graph is
unweighted), so the adjacencies themselves are the useful
information as there are no associated values to read with
them. Additionally, the binary matrix results in each output
element being a sum reduction instead of a dot product. Our
proposed technique does not rely on these restrictions, and
it can be extended to handle generalized SpMV.

There are two directions to perform the computation:
pull (akin to row-major SpMV) and push (akin to column-
major SpMV). In the pull direction, each vertex reads the
contributions of its incoming neighbors and computes its
own score (Algorithm 1). In the push direction, each vertex
adds its contribution to the sums of its outgoing neighbors
(Algorithm 2). After propagating the contributions in the
push direction, a later pass will use those sums to compute
the new scores. The pull direction is often more efficient
since it only reads each neighbors’ contributions rather than
doing an atomic add to each neighbor’s sum. Implementing

Algorithm 1 PageRank in pull direction
Input: G(V,E), number of iterations I
Output: PageRank scores for all vertices PR[:]
PR[:]← 1/|V |
for each iteration i ∈ 1 . . . I do

for each vertex u ∈ V do
contributions[u]← PR[u]/OUTDEGREE(u)

for each vertex u ∈ V do
sum← 0
for each incoming neighbor v of vertex u do

sum← sum+ contributions[v]

PR[u]← (1− d)/|V |+ d× sum

Algorithm 2 PageRank in push direction
Input: G(V,E), number of iterations I
Output: PageRank scores for all vertices PR[:]
PR[:]← 1/|V |
for each iteration i ∈ 1 . . . I do

sums[:]← 0
for each vertex u ∈ V do

contribution← PR[u]/OUTDEGREE(u)
for each outgoing neighbor v of vertex u do

sums[v]← sums[v] + contribution

for each vertex u ∈ V do
PR[u]← (1− d)/|V |+ d× sums[u]

the pull direction requires the transpose graph if the graph is
directed, as the computation will need to know the incoming
edges for each vertex. Both directions compute the same
result, and the distinction is whether the sum (pull) or the
contribution (push) is the vertex value immediately reused.

III. LOCALITY CHALLENGES FOR PAGERANK

Locality is extremely important to PageRank performance,
as improved locality can reduce communication which in
turn will improve performance. Although a given algorithm
may have a predictable number of reads and writes based
on its input size, those reads and writes may translate into
a variable number of memory requests to DRAM based on
cache locality. Although modern processors have multiple
levels of caches, in this work we consider only a single cache
level representative of the last-level cache (LLC). This is
reasonable, as the bandwidth between the LLC and DRAM
is typically the communication bottleneck [5].

The propagation of a contribution to a sum is the core
of PageRank’s communication. To perform a propagation,
the computation must read the graph adjacencies to identify
which vertices are connected and subsequently access the
contribution for the source vertex and the sum for the
destination vertex. We categorize the memory traffic for
this PageRank communication into “edge” traffic, which



accesses the graph adjacency information, and “vertex”
traffic, which accesses the contributions or sums associated
with vertices. The edge traffic typically enjoys good spatial
locality, as most implementations process the neighbors of
a vertex consecutively and many graph layouts (e.g., CSR)
store neighbor identifiers continuously. The vertex traffic has
the potential to have much lower locality, since a vertex
could potentially be connected to any other vertex, and so
the vertex value accesses are unlikely to be consecutive. For
graphs with many vertices, the corresponding arrays that
associate a value with each vertex are much larger than the
cache, so non-consecutive accesses to these arrays are likely
to have poor cache locality.

Vertex traffic is composed of accesses for the contributions
as well as accesses for the sums, and it is challenging to
improve locality for both access streams simultaneously. One
of the vertex value accesses will have high temporal locality
(probably even register allocated), but the other will have
potentially low locality as there is no restriction on a vertex’s
location relative to its neighbor (Figure 1). For example, in
the pull direction, the sum of incoming contributions will
have high locality, but reading the neighbor’s contributions
could have low locality. For the push direction, the outgoing
contribution will have high locality, but reading (and writing)
its neighbors’ sums could have low locality. The low locality
vertex value accesses not only increase the number of
memory requests (low temporal locality), but the low locality
can also result in unused words within transferred cache lines
(poor spatial locality). These unused words are problematic,
as they waste bandwidth and energy.

Since the vertex values are stored contiguously in arrays,
the graph labelling (or “layout”) has a tremendous impact
on the locality of the vertex value accesses. For accesses
that will potentially have low locality, whether they actually
experience low locality is determined by the graph’s layout.
An ideal high-locality graph layout when viewed by its ad-
jacency matrix has all of its non-zeros in a narrow diagonal.
Not only does this improve the spatial locality for processing
one vertex since all of its neighbors’ vertex values will be
adjacent, but it also improves the temporal locality between
vertices because there will be large overlaps between their
neighbors. Unfortunately, some graphs’ topologies make it
difficult to find such an ideal layout. These graphs of interest
are often low-diameter and are often social networks [6].
Alternatively, for some situations the time to compute and
transform the graph into such a layout is not warranted.

Cache blocking [7] is a technique to reduce the negative
impact of low-locality vertex value accesses. By partitioning
the graph into blocks, the potential range for vertex values is
reduced sufficiently such that the corresponding slices of the
arrays for vertex values are small enough to reside in cache,
thus improving the locality of that access stream (Figure 1).
Unfortunately, this gain for the low-locality access stream
comes at the expense of the high-locality access stream.
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Figure 1. Accesses needed to process one vertex and its neighbors for
PageRank, with or without 1D cache blocking for both pull (row-major)
and push (column-major) directions. All approaches enjoy high locality
when accessing the adjacency matrix (edge traffic). The vertex value arrays
(contributions or sums) are much larger than the cache size, and thus
accessing a sparse range within them could have low locality. Without
blocking (top), one vertex value access obtains high locality at the expense
of the other. Pull has high temporal locality on the sums, but low locality
reading the contributions. Push has high locality reading the contributions,
but low locality for the sums. Cache blocking (bottom) reduces the range
of vertex values to the current block in order to improve locality.

For example, blocking in the pull direction will improve the
locality of reading the neighbors’ contributions, but worsen
the locality of accessing the sum, as the sum must be re-
read and written for each block. The more blocks the graph
is partitioned into, the more times the sums must be re-
accessed. The block size is a tradeoff between the localities
of the two access streams, with the optimum size resulting
in moderate locality for both streams. Cache blocking can
be done in one or two dimensions and can be applied to
either direction (push or pull). It is also worth distinguishing
cache blocking for sparse matrices from register blocking for
sparse matrices, which is often done to reduce the amount
the index array is read [7].

To implement cache blocking, the graph data structure
needs to be modified to accomodate easy access to each
block. One technique is to store the graph blocks each as
their own graph (in CSR). If the graph is sufficiently sparse
(e.g. expected number of nonzeros per row per block < 1),
it may be advantageous to store each block as an edge list
instead to cut down on the index traffic.
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Figure 2. Propagation blocking. In the binning phase, vertices pair
their contributions with their destination indices and insert them into the
appropriate bins. In the accumulate phase, the contributions are reduced
into the correct sums.

The challenge for PageRank communication is that it is
difficult for both vertex value memory access streams to
obtain high locality simultaneously. With the push technique
or the pull technique, one stream does well at the expense
of the other. Cache blocking allows for a more continuous
locality tradeoff between the two streams, but it does not
allow for them both to have high locality simultaneously.

IV. PROPAGATION BLOCKING

To improve the low locality vertex value accesses, we
propose propagation blocking. Unlike cache blocking that
blocks the graph itself, we block the propagations (transfers
of vertex values). Propagation blocking stores the propa-
gations to memory in a semi-sorted manner, so when the
propagations are read later, the accesses will have better
spatial locality. We split the propagation of contributions for
the push technique into two phases: binning and accumulate
(Figure 2 & Algorithm 3).

In the binning phase, all of the contributions are read,
but instead of adding them directly to their sums, we insert
them into bins corresponding to their destination vertices.
Each bin corresponds to a distinct contiguous range of
vertices. When inserting a contribution into a bin, we append
the destination vertex identifier to create a (contribution,
destination) pair. This binning phase is analogous to a radix
partitioning done for a database join or a bucket sort. The
binning phase enjoys good spatial locality, as inserting into a
bin stores to consecutive addresses, and the number of bins
is small enough (e.g., 64) that the insertion points of these
bins can fit in cache simultaneously.

In the accumulate phase, one bin is processed at a time
and the contributions are added to their appropriate sums
guided by their paired destination identifiers. Because a
bin corresponds to a reduced range of vertices, all of its
corresponding sums can fit in cache at once, improving

Algorithm 3 PageRank by propagation blocking
Input: G(V,E), number of iterations I , number of bins B
Output: PageRank scores for all vertices PR[:]
PR[:]← 1/|V |
for each iteration i ∈ 1 . . . I do

bins[:]← {}
for each vertex u ∈ V do . Binning Phase

contribution← PR[u]/OUTDEGREE(u)
for each outgoing neighbor v of vertex u do

insert (contribution, v) into bins[v/B]

sums[:]← 0
for each index b ∈ 1 . . . B do . Accumulate Phase

for each (contribution, v) ∈ bins[b] do
sums[v]← sums[v] + contribution

for each vertex u ∈ V do
PR[u]← (1− d)/|V |+ d× sums[u]

temporal locality. Reading the (contribution, destination)
pairs from the bin also enjoys high spatial locality since
they are contiguous.

Propagation blocking reduces communication through the
use of additional memory space to store the propagations.
The amount of additional memory required can be substan-
tial, since each directed edge in the graph will need space
for two words (contribution and destination). The additional
memory is split into bins, and the number of bins is the
number of vertices in the graph divided by the bin width. We
select the bin “width” so the number of vertices associated
with each bin is small enough that its corresponding slice
of the sums array can fit in cache.

To further reduce communication, propagation blocking
can leverage a deterministic layout for the bins. If the
locations that contributions are written to within a bin are
the same for multiple iterations on the same graph, the
destination identifiers can be stored in a separate data struc-
ture. This halves the number of writes during the binning
phase, as only the contributions and not their destinations
need to be written. During the accumulate phase, the bin is
read in lockstep with the destination indices to determine
the destinations for each contribution. The separate arrays
containing the destination indices can be reused after the
first iteration of PageRank or even computed in advance.

In addition to consuming more memory capacity, propaga-
tion blocking performs additional load and store instructions
in order to insert propagations into the bins and read
propagations back from the bins. Since propagation blocking
makes use of every word in each transferred cache line,
it can transfer fewer cache lines to achieve a net memory
communication reduction. Whether propagation blocking is
advantageous depends on how well the baseline makes use
of every word in each cache line it transfers.



V. COMMUNICATION MODEL

We present simple analytic models for the amount of
communication each PageRank implementation strategy per-
forms in order to gain qualitative insights into their tradeoffs.
Our models assume a uniform random input graph due to
its simplicity, but we acknowledge a random graph is the
worst case for many of these implementations due to its
lack of locality. For communication volume, we use units
of cache lines since that is the unit of transfer with main
memory. Within cache lines we use the unit of words (e.g.,
32-bit words). We model only a single global iteration of
PageRank, since each implementation strategy we model
communicates the same amount each iteration. We use the
following parameters:

n number of vertices (|V |)
k average directed degree (kn = |E|)
b number of words per cache line
c number of words in cache
r number of graph blocks for cache blocking
To read the graph from a CSR layout requires kn/b

cache lines to read the adjacencies and 2n/b cache lines to
read the indices. Our index uses 64-bit pointers to support
greater than 4 billion edges, so we count each of these
pointers as two words. To read the vertex values, looking
up the destination sums requires reading n/b cache lines.
The contributions could potentially be in cache, and we
approximate the miss hit rate as 1− c/n (assuming n > c).
Since there are kn directed edges, reading the contributions
requires (1− c/n)kn cache lines. To output the final scores
requires writing n/b cache lines. Altogether, the number of
cache lines the pull technique reads is:((

1− c

n

)
+

1

b
+

3

kb

)
kn

A. Cache Blocking

We model the communication for 1D cache blocking in
the push direction using a CSR data structure for each block.
Reading the adjacencies still requires reading kn/b cache
lines, however, with r blocks we will also read r index
arrays, so reading in all of the graph requires a total of
(k + 2r)n/b cache line reads. Presumably, the blocks are
small enough such that n/r < c, so the only vertex value
traffic needed is compulsory, but the blocked vertices will be
re-read, yielding (r+1)n/b cache line reads. To output the
final scores requires writing n/b cache lines. Altogether, the
number of cache lines 1D cache blocking on CSR requires
reading is:

(k + 3r + 1)
n

b

If the graph is sufficiently sparse (k < 2r), using an edge
list to hold each block instead of CSR reduces the index
communication, yielding a cache line read total of:

(2k + r + 1)
n

b

We do not model 2D cache blocking since in our context,
2D cache blocking will not communicate significantly less
than 1D cache blocking. As 2D cache blocks are processed
temporally, they will effectively merge into a 1D cache block
along the dimension they are being processed along. This
effective 1D cache block will communicate the same as if
it were truly a 1D cache block.

B. Propagation Blocking
We assume there are an adequate number of bins such

that n/r < c. Like the pull case, reading the CSR graph
requires reading (k+2)n/b cache lines. Reading the source
vertex values requires n/b cache line reads and outputting
the final scores requires n/b cache line writes. Propagating
contributions writes 2kn/b cache lines in the binning phase
and reads 2kn/b cache lines in the accumulate phase.
Reusing the destination indices saves kn/b writes from
the binning phase. Altogether, the number of cache lines
propagation blocking reads is:(

3 +
3

k

)
kn

b

and writes (when reusing destination indices):(
1 +

1

k

)
kn

b

C. Commentary
For the pull technique, the miss rate (1 − c/n) strongly

impacts the amount of traffic. Comparing the total commu-
nication of propagation blocking to the pull technique, we
see propagation blocking will be advantageous when:

b ≥ 3

1− c/n

This tradeoff is intuitive, as the opportunity for propagation
blocking is if the pull technique frequently misses the
cache and does not utilize every word in each cache line
transferred.

Propagation blocking is advantageous to cache blocking
using an edge list when:

r ≥ 2k + 2

To first order, the amount of traffic per vertex for cache
blocking is proportional to r, while for propagation blocking
it is proportional to k. These dominant factors correspond
to the attribute each technique is blocking. Cache blocking
breaks up the graph, and r is proportional to n/c. For
larger graphs, cache blocking will use more blocks and
reload the vertex values more times, which will decrease
its communication efficiency. Propagation blocking breaks
up the propagations, which are proportional to k. Thus,
propagation blocking will not have a change in communica-
tion efficiency for larger graphs. From our simple models,
we see propagation blocking will communicate less than
cache blocking when the graph is sparse enough and has
sufficiently more vertices than can fit in the cache.



Short Name Description # Vertices (M) # Edges (M) Degree Symmetric References
urand Uniform Random Graph 134.2 2,147.5 16.0 Y [8]
kron Kronecker Synthetic Graph 134.2 2,125.7 16.0 Y [9], [10]
twitter Twitter Follow Links 61.6 1,468.4 23.8 N [11]
friend Friendster 124.8 3,612.1 28.9 Y [12]
cite Academic Citations 49.8 949.6 19.0 N [13]
coath Academic Coauthorships 119.9 1,293.8 10.8 Y [13]
web webbase-2001 118.1 632.1 5.4 N [14]
webrnd webbase-2001 Randomized 118.1 632.1 5.4 N [14]

Table I
GRAPHS USED FOR EVALUATION. ALL GRAPHS COME FROM REAL-WORLD DATA EXCEPT URAND AND KRON.

VI. EVALUATION

To perform our evaluation, we use a suite of sparse, low-
diameter graphs that come from a diverse range of appli-
cations (Table I). All of the graphs except urand and kron
come from real-world data sources. Each graph also uses the
vertex labelling provided by its original data source, which
is often chosen intelligently. The uniform random graph
(urand) represents the worst case for locality. The kron graph
is generated akin to Graph500’s input graphs, and when
compared to urand which is the same size, it demonstrates
the impact of a strong power-law degree distribution on
locality. The twitter and friend graphs come from crawls
of social networks. Using the data on academic publica-
tions provided by the Microsoft Academic Graph [13], we
generate a graph of all coauthorships (with duplicate edges
removed) and a graph of all paper citations. The graph web
has a great vertex labelling, and to show the locality benefit
of that labelling, we randomize web’s labelling to produce
webrnd. Since PageRank computation is proportional to the
number of directed edges, in this work, we use the directed
degree since we find it to be a more instructive metric. The
directed degree of an undirected (symmetric) graph is twice
its average degree.

For consistency, we start all of our implementations from
the same codebase, and we use the GAP Benchmark Suite’s
implementation of PageRank [3], [15]. We use the following:

• Baseline is the reference implementation and it com-
putes PageRank in the pull direction.

• Cache Blocking (CB) improves our baseline by per-
forming 1D cache blocking. It computes in the push
direction, and it uses an edge list for each block.

• Propagation Blocking (PB) implements our
propagation-blocking technique in the push direction.

• Deterministic Propagation Blocking (DPB) improves
upon PB by using the optimization of storing the
destination indices separately so that during the binning
phase, only the contributions need to be written.

For our blocking implementations, we first tune the block
width and then compute the number of blocks based on
the width. After testing many block widths, we determined
our implementations perform best when the corresponding

Time Memory Reads / Instructions
Codebase (s) Reads (M) second (M) Executed (B)
Baseline 2.49 2,269 911.7 16.2
CSB (SpMV) 4.12 2,504 608.0 58.4
Galois 5.06 2,535 501.3 44.9
GraphMat 3.75 2,338 623.1 88.8
Ligra 4.54 3,983 877.8 36.1

Table II
PERFORMANCE OF A SINGLE PAGERANK ITERATION ON URAND GRAPH.

BASELINE SIGNIFICANTLY OUTPERFORMS PRIOR WORK.

vertex value array segments are 512 KB. We explore the bin
width tradeoffs for propagation blocking later in this section.
Each result in this section is the average of multiple trials of
a single iteration of PageRank. We do not include the time
to block the graph for CB or to allocate the bins for PB, as
these can be done in advance or reused for other algorithms.

To perform our evaluation, we use a dual-socket Intel Ivy
Bridge server with E5-2667 v2 processors, similar to what
one would find in a datacenter. Each socket contains eight
3.3 GHz cores and 25 MB of last-level cache (LLC). The
server has 256 GB of DDR3-1600 DRAM provided by 16
DIMMS. To access hardware performance counters, we use
Intel PCM [16]. We compile all code with gcc-4.8, except
the external baselines that use Cilk from icc 14. To ensure
consistency across runs, we disable Turbo Boost (dynamic
voltage and frequency scaling) and use only one thread per
core (no hyperthreads). All results in this work use all 16
cores except Figure 3.

A. Baseline Validation

To ground our work, we validate the performance of our
baseline implementation by comparing it to four established
codebases. We use the PageRank implementations from
Galois [17], GraphMat [18], and Ligra [19]. We also use the
Compressed Sparse Blocks (CSB) SpMV implementation,
but since it does not perform the additional computations
necessary for PageRank, our measurements overestimate its
performance for PageRank [20].

Table II presents the performances of our baseline and the
four established codebases computing a single iteration of
PageRank. Although our baseline implementation is simple,
its litheness allows it to communicate the least and execute
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Figure 3. Vertex value traffic consumes the majority of memory requests
for the low-locality graphs. The web graph has high locality.

the fewest instructions while still utilizing the most memory
bandwidth. Both our baseline and Ligra obtain high memory
bandwidth utilization (with synthetic microbenchmarks we
achieve a maximum of 1,191 M memory requests/second),
but Ligra is slower because it performs additional com-
munication. CSB, Galois, and GraphMat all execute so
many additional instructions that their memory bandwidth
utilization is bottlenecked by the instruction window size [5].
Overall, our baseline implementation is substantially faster
than prior work (> 1.5×), so by transitivity, any perfor-
mance improvements over our baseline represent substantial
improvements over prior work.

B. Quantifying the Opportunity for Propagation Blocking

To gauge the opportunity for how much our blocking
techniques can improve locality, we first measure how much
locality there is in our benchmark graphs. In theory, the
amount of memory communication for the vertex traffic and
the edge traffic (reading the graph) should be equal, but
if the vertex value accesses have low locality, the vertex
traffic can consume much more than half of the memory
traffic. Figure 3 shows that most of our input graphs have
low-locality layouts, as the vertex traffic consumes far more
than the expected 50%. To measure the fraction of edge
memory traffic, we process each graph twice: once with our
baseline implementation, and once only reading the graph.
The traffic we measure for reading only the graph is also in
close agreement with our model from Section V.

The web and webrnd graphs have exactly the same
topology, but web’s optimized layout enjoys many more
cache hits for its vertex accesses, which in turn reduces
the total number of memory requests. This impact is visible
in Figure 3, as the same number of accesses to read the
vertex values for the web graph are reduced to near the
expected 50%. Although the kron graph is the same size as
the urand graph, its power-law degree distribution improves
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Figure 4. Execution time improvement over baseline. Blocking approaches
improve performance unless the graph already has high locality (web).
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Figure 5. Communication volume reduction over baseline. Blocking
reduces communication unless the graph already has high locality (web).

the temporal locality of vertex value accesses, and so it too
enjoys more cache hits, reducing its vertex traffic. Overall,
all of our input graphs except the web graph have low
locality and could thus be amenable to blocking.

C. Comparing Blocking Approaches

All three blocking implementations deliver substantial
performance (Figure 4) and communication (Figure 5) im-
provements relative to our baseline. The reductions in com-
munication are greater than the reductions in execution time
because our baseline implementation utilizes more memory
bandwidth. The web graph defies these trends, because it is
the only graph with a high-locality layout.

The detailed results in Table III show that propagation
blocking greatly reduces the amount of read traffic, but
its overall communication reduction is reduced by the
additional write traffic to store propagations to bins. To
perform propagation blocking, PB and DPB perform on
average four times as many instructions as the baseline,



Pull Baseline Propagation Blocking (PB) Deterministic Propagation Blocking (DPB)
Time Memory (M) Instructions Time Memory (M) Instructions Time Memory (M) Instructions

Graph (s) Reads Writes Exec. (B) (s) Reads Writes Exec. (B) (s) Reads Writes Exec. (B)
urand 2.50 2,269.1 162.9 16.2 1.50 467.0 469.8 76.8 1.32 481.0 349.5 74.1
kron 2.03 1,570.3 158.9 17.3 1.34 463.7 463.7 76.2 1.20 472.5 340.7 73.2
cite 1.30 777.5 77.4 6.9 0.57 202.8 200.4 33.7 0.56 203.3 140.9 32.4
coauth 0.99 673.8 123.1 10.9 0.92 297.6 292.7 47.9 0.93 308.4 229.5 47.0
friends 3.72 3,285.2 219.7 23.4 2.16 753.5 760.4 125.5 2.12 769.9 541.9 120.6
twitter 1.02 686.0 103.9 9.7 0.79 307.8 304.0 51.7 0.69 305.3 209.2 49.0
web 0.44 161.8 127.3 7.6 0.46 173.8 166.2 25.9 0.45 172.7 125.6 24.9
webrnd 1.22 697.1 139.3 7.7 0.50 169.0 167.4 25.9 0.46 168.7 127.5 24.9

Table III
DETAILED PERFORMANCE RESULTS FOR BASELINE AND BOTH PROPAGATION BLOCKING IMPLEMENTATIONS
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Figure 6. Memory requests per edge. As model predicts, propagation
blocking (PB & DPB) performs nearly constant communication per edge.

and this reduces propagation blocking’s memory bandwidth
utilization. DPB’s optimization of reusing destination indices
substantially reduces the amount of write traffic, which in
turn boosts performance.

Figure 6 shows the amount of communication normalized
by the number of directed edges in the graph. Since all
implementations process the same number of edges, this
ratio from the GAIL metrics allows us to concisely com-
pare communication efficiencies [21]. In general, memory
communication efficiency for propagation blocking is con-
sistent, so whether propagation blocking is more efficient
that the baseline is determined by how efficient the baseline
is. Figure 6 shows that the blocking implementations fail
to obtain a large improvement over the baseline on the
web graph because the web graph’s high locality naturally
reduces communication for the baseline, which gives the
baseline much of the benefit of blocking.

To quantify the topological properties necessary for block-
ing to be advantageous, we artificially control locality by
generating graphs of the same degree but with varying num-
bers of vertices (Figure 7). With fewer vertices, the vertex
values are more likely to remain in cache. For our baseline,
once the graph becomes sufficiently large, it overflows the
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Figure 7. Communication efficiency for uniform random graphs of
degree=16 and varied number of vertices. DPB is best for large graphs.
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Figure 8. Communication efficiency for uniform random graphs of 128 M
vertices and varied degree. DPB is best for sparse graphs.

cache and moves more data. For CB, the number of blocks
increases along with the number of vertices, which causes
the vertex values to be re-read more times. The constant
number of memory requests per edge for DPB indicates that
the number of edges is the primary determinant of memory
traffic, and it is not the expected hit rate (c/n) like the



baseline, or the number of blocks r (proportional to n/c) for
CB. Thus, which approach communicates the least depends
on the number of vertices relative to the cache size. For
the smallest graphs, blocking is unmerited and our baseline
is the most communication efficient. For mid-size graphs,
cache blocking is the most efficient, but as the graph gets
too large, the overhead of reloading the vertex values makes
it less efficient. For the largest graphs, propagation blocking
provides the most scalable communication.

In Figure 8 we vary the degree of the input graph to find
the sparsity for which DPB is advantageous to CB. Since
all of the graphs have the same number of vertices, CB will
use the same number of blocks. For denser graphs, CB’s
communication efficiency improves because it has more
useful work to amortize the compulsory traffic of reloading
the vertex values for each block. In this experiment, DPB
communicates substantially less than CB if the directed
degree is 36 or less. For graphs with more vertices, that
degree cutoff will be higher, since CB will have more
compulsory traffic to amortize. These experiments confirm
our prediction from Section V that propagation blocking will
be more communication efficient for graphs that are larger
and sparser.

D. Selecting Bin Size

We vary the bin width to determine its impact on propa-
gation blocking’s performance. Once the vertex value array
slices that correspond to each bin are small enough to fit
in the cache, there is not much change in communication
volume (Figure 9). The web graph is insensitive to bin
width since its high-locality layout obviates blocking. Once
memory communication is minimized, there is additional
execution time benefit to using slightly smaller bins (Fig-
ure 10). However, making the bins too small makes them
too numerous, which causes more L1 cache misses for bin
insertions during the binning phase. These L1 misses reduce
performance, but they do not greatly increase memory traffic
because they result in mostly L3 hits. For our platform, we
select a bin width of 512 KB, as it is typically the fastest
while communicating little.

The number of bins is a tradeoff between locality in the
two phases of propagation blocking. Increasing the number
of bins reduces the likelihood the bin insertion points will
remain in cache during the binning phase, but it decreases
the bin width which in turn increases the likelihood of the
sums remaining in cache during the accumulate phase. Fig-
ure 11 shows the time spent in each phase while processing
the urand graph, and it shows the tradeoff between cache
misses in the binning phase or the accumulate phase.

The results indicate our DPB implementation can reduce
communication substantially, but there are cases when our
other implementations communicate less. The locality of
the graph determines whether one should use the pull
baseline (high locality) or either CB or DPB (low locality).
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Figure 9. Impact of bin width on communication volume of propagation
blocking. Once bins are sufficiently small, communication is reduced.
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Figure 10. Impact of bin width on execution time of propagation blocking.
We select 512 KB due to consistently good performance.
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Unfortunately, a graph’s locality is not easy to measure
quickly, but hopefully from the context of the application
there should be hints as to its locality. The degree and the
number of vertices determine whether one should use DPB
(lower degree and more vertices) or CB (higher degree and
fewer vertices). Fortunately, those topological parameters are
easy to access and the decision to use DPB or CB could be
made dynamically at runtime.

VII. IMPLEMENTATION DETAILS

To improve the performance of our propagation-blocking
implementation, we use a number of optimizations. We
restrict our bin widths to powers of two so we can use
a shift instructions to quickly compute a destination bin
(instead of an integer divide), and this improves performance
during the binning phase. To reduce the amount of com-
munication during the binning phase, we use non-temporal
stores and other optimizations from prior work on radix
partitioning [22], [23], [24]. By using Intel’s non-temporal
(streaming) store instructions, we instruct the processor to
bypass the cache when performing the writes to the bins,
which obviates the read from memory for the write allo-
cate [25]. We use small cache line-aligned fixed-size buffers
to coalesce our writes for the streaming stores. For copying
from our buffers in cache to the bins in memory, we obtain
the best performance using the AVX non-temporal stores,
but we also experimented with the SSE2 streaming stores
and the ERMSB idiom [25]. During the accumulate phase,
we use software prefetch instructions to improve memory
bandwidth utilization for reading the currently processed bin.

To parallelize propagation blocking, we make different
design decisions for each phase. For the binning phase,
we give each thread its own set of bins to avoid atomicity
concerns, and we use static scheduling so we can anticipate
how large to allocate the bins in advance. To balance
our static work allocation, we assign work based on the
number of edges rather than vertices since degrees can vary
substantially. For the accumulation phase, we dynamically
assign vertex ranges to threads, and each thread processes its
range’s constituent bins. Since only one thread processes a
vertex range, there are no need for atomics. When increasing
the number of active threads on a given hardware platform,
we find it is often best to decrease the bin width since the
additional threads contend for the same cache capacity.

VIII. RELATED WORK

SpMV is communication-bound, and as a consequence,
much of the prior work on optimizing for performance has
naturally also optimized communication [26]. Bender et al.
provide complexity bounds on the amount of communication
for SpMV [27], and their I/O model matches our model of
a cache and main memory. Nishtala et al. provide criteria
for when cache blocking will be advantageous for SpMV,
and it is consistent with our results [7]. For example, we

find the number of vertices (x in their formulation) and the
randomness of the matrix to be important requirements.

There has been extensive prior work on reordering graphs
and sparse matrices in order to improve locality, but un-
fortunately, no reordering technique is beneficial for all
input graphs [6]. The Cuthill-McKee [28] technique and
its follow-on RCM [29] apply BFS as a heuristic to find
a good ordering. Compressing graphs exposes many of the
same locality challenges, and the WebGraph framework is
specifically designed to compress web crawls [30].

Relabelling the graph transforms the graph spatially, but
the graph can also be transformed temporally. Changing the
order in which edges are read from the graph can improve
locality. Cache-oblivious algorithms use space-filling curves
to obtain reasonable locality without any knowledge of the
size of the cache, and they have been successfully applied
to SpMV [31] and PageRank [32]. Unfortunately, these tem-
poral transformations can greatly complicate parallelization.

In addition to reordering graphs to improve locality, there
is also prior work on blocking to improve locality for graph
processing. Park et al. demonstrate locality benefits from
tiling for the all pairs shortest paths problem [33]. Xie et
al. accelerate PageRank by breaking the graph into blocks
and iterating more frequently on more rapidly changing
blocks [34]. The milk language extension automatically
batches up indirect memory references in order to improve
locality [35]. Zhang et al. demonstrate the locality benefits
of relabelling a graph based on vertex degree, and they
introduce CSR segmenting, a more efficient means of 1D
cache blocking [36]. We recently learned of related work by
Buono et al. that improves locality for SpMV by breaking
the computation into two phases, and their approach is
quite similar to propagation blocking [37]. Azad et al.
extend that two-phase approach to handle SpMV with sparse
vectors [38].

IX. DISCUSSION

In this work we introduce propagation blocking by apply-
ing it to PageRank, but it is more widely applicable. More
broadly, propagation blocking reduces communication for
a sparse all-to-all transfer by using binning to bound the
irregularity. We originally conceived of propagation blocking
to improve the locality of inter-vertex message passing
within GBSP, a bulk-synchronous parallel (BSP) domain-
specific language (DSL) for graph processing [39], [40].

Propagation blocking can be easily extended to handle
more general forms of SpMV, such as SpMV on non-square
matrices and non-binary matrices. To support weighted
graphs (non-binary matrices), the weights can be read in
lockstep with the adjacencies and applied directly to the
contributions during the binning phase. Propagation block-
ing can also be applied to SpMV-centric graph processing
models as well as many vertex-centric programming models
that operate in the push direction.



There are additional benefits to propagation blocking.
Since the amount of communication for propagation block-
ing is proportional to the number of propagations, unlike
cache blocking, propagation blocking experiences no loss
in communication efficiency if only a subset of the vertices
are active. Another benefit of propagation blocking is the
predictability of its memory access patterns ease its imple-
mentation for systems with scratchpad memories. Since the
access ranges are bounded, all of the necessary data can
be transfered in bulk by software between the on-chip local
store and off-chip memory.

In our evaluation, we compare the time it takes to perform
PageRank once the graph has been loaded and optimized,
but the time to optimize the graph is also worth considering.
It may be worthwhile to optimize the graph less if the
reduction in graph preprocessing time is greater than the
increase in kernel execution time. Fortunately, preparation
for propagation blocking is substantially faster than prepa-
ration for cache blocking or relabelling a graph, thus making
propagation blocking advantageous in more usage scenarios.

As demonstrated by our benchmark graph web, when a
high-locality graph layout is available, communication for
PageRank is naturally reduced. Unfortunately, such high-
locality graph layouts are not always available. Blocking
is a great way to improve locality, and the amount of
communication for cache blocking is proportional to the
number of vertices while for propagation blocking it is
proportional to the number of edges. Thus, for large sparse
graphs, propagation blocking will communicate less, and
our simple communication models and performance results
demonstrate this.
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