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Abstract—RTL simulation is a critical tool for hardware design but its current slow speed often
bottlenecks the whole design process. Simulation speed becomes even more crucial for agile
and open-source hardware desigh methodologies, because the designers not only want to
iterate on designs quicker, but they may also have less resources with which to simulate them.
In this work, we execute multiple simulators and analyze them with hardware performance
counters. We find some open-source simulators not only outperform a leading commercial
simulator, they also achieve comparable or higher instruction throughput on the host processor.
Although advanced optimizations may increase the complexity of the simulator, they do not
significantly hinder instruction throughput. Our findings make the case that there is significant
room to accelerate software simulation and open-source simulators are a great starting point for

researchers.

Introduction

Simulation is an invaluable tool for hardware
design due to the high financial and temporal
costs of fabricating a chip. Simulation is used in
a variety of settings, whether it be development,
design space exploration, debugging, verification,
or validation. To improve simulation speed, com-
mon techniques include using reduced fidelity
models (e.g. transaction-accurate simulation) or
hardware acceleration (e.g. FPGA emulation). As
such, cycle-accurate RTL simulation performed
by software is still the most commonly used tool
and remains a persistent bottleneck for hardware
design.

Fast simulation is even more important in an
agile or open-source hardware design context.
The designers not only want to iterate on designs
quicker, but they may also have less resources
with which to simulate them. It may be much
more economical for them to reuse conventional
compute resources they already have instead of
pursuing a hardware-accelerated simulation plat-
form. Additionally, for simulations of modest du-
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ration or shorter, the software simulator may re-
turn results quicker in practice than the hardware-
accelerated simulator because of a much shorter
compile time. At a minimum, software simulation
is complementary to hardware-accelerated simu-
lation, if not the only means of simulation.

Software simulation was formerly a vibrant
research topic, but has received substantially
less attention recently [7], [11]. A number of
factors may have reduced the appeal of cycle-
accurate simulation research, but we identify two
prominent concerns. First, since simulation is
a mature research topic, one might doubt how
much additional speedup remains to be gained.
Second, since simulators are typically frontend-
bound on the host processor, the benefit of an
optimization might be negated by exacerbated
frontend bottlenecks. In this work, we counter
these concerns to argue for a revival of software
simulation research.

With the emergence of agile and open-source
hardware design methodologies, the need for fast
simulation is even greater. The rise of fast open-
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source simulators provides an interesting solution
to the problem. Their open-source nature not only
reduces adoption costs for practitioners, but it
also provides a great platform for researchers to
quickly evaluate their ideas. Software simulation
research will be essential for agile hardware de-
velopment, and we demonstrate its potential with
the success of recent open-source simulators. This
work makes the following contributions:

e A quantitative evaluation highlighting the per-
formance advantages of two open-source sim-
ulators over a state-of-the-art commercial sim-
ulator which reveals there is substantial room
to improve simulation performance.

e A thorough workload characterization using
hardware performance counters which con-
firms the frontend bottleneck but also proves
that aggressive optimizations can deliver net
speedups despite increasing control-flow com-
plexity. The practical utility of these novel
optimizations demonstrates the benefit of re-
searching simulation performance.

e A road map of potential research directions to
improve simulation performance.

The combination of the availability of high-
performance open-source simulators and the
needs of agile design methodologies strongly mo-
tivate further research into accelerating software
RTL simulation.

Simulation Background

Early RTL simulators computed the values of
hardware designs by propagating signal updates
as events, which also matched the semantics of
the languages they modeled (e.g. Verilog). With
these event-driven simulators, each time a signal
is evaluated, it creates events to evaluate its
children. Tracking which signals to activate and
then dynamically scheduling them adds consider-
able overhead. Full-cycle simulators eliminate the
scheduling overhead by performing the schedul-
ing once at compile time and reusing it each cycle
(static schedule) [7].

A full-cycle simulator is best thought of as
a simulator generator. Rather than dynamically
interpreting the design like an event-driven sim-
ulator, a full-cycle simulator generator consumes
a design and produces a simulator specialized for
that design. Typically, the simulator is produced

by code generation and a conventional optimizing
compiler. Creating a full-cycle simulator effec-
tively “inlines” the entire design.

The generated simulators are typically bot-
tlenecked by the frontend of the host processor.
The simulator is essentially the entire design
turned into mostly straight-line code. Each cycle,
it simulates the entirety of the design, so in-
structions are not reused until the next simulated
cycle. As the design gets larger, the resulting
simulator binary also grows, further exacerbating
the frontend bottleneck. With frequent instruction
cache misses, conventional wisdom for simulator
generators is to avoid unpredictable branches that
could inhibit instruction flow. More generally, this
fear results in a hesitation to consider aggressive
optimizations. Full-cycle simulators are typically
the fastest because the overhead reduction from
static scheduling outweighs a loss in instruction
throughput from the frontend bottleneck.

Emerging Open-Source Simulators
In this work, we analyze two open-source sim-
ulators to motivate additional simulator research.

Verilator

Verilator' is the fastest open-source Verilog
simulator, and it is widely used not only due to
its free nature, but also its absolute speed. It is a
full-cycle simulator generator, and it emits C++
to be compiled by the host platform’s compiler.
Internally, it contains optimizations and heuristics
that have been developed with years of feedback
from real designs.

ESSENT

ESSENT is a new open-source simulator gen-
erator that employs a number of aggressive op-
timizations while still maintaining cycle accu-
racy [4]. At its core, ESSENT is a full-cycle
simulator that uses conditional execution to skip
over unnecessary simulation work. In this sub-
section, we briefly describe some of ESSENT’s
novel optimizations.

ESSENT’s primary optimization exploits the
fact that most signals in a hardware design rarely
change (typical activity factor is 3%). The gen-
erated simulator recognizes which portions of

Uhttps://www.veripool.org/wiki/verilator
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the design are unchanged, and reuses those out-
puts. Detecting signal changes and thus determin-
ing which signals can be reused can introduce
tremendous overheads if done at the fine gran-
ularity of individual signals. To amortize those
overheads, ESSENT coarsens the design with its
novel acyclic graph partitioner. The optimization
is successful enough for ESSENT to enjoy a net
speedup. The optimization results in an activity-
proportional simulation in which a partition of
the design is only evaluated if at least one of its
inputs changes.

In addition to skipping unchanged signals,
ESSENT also reduces simulation effort by not
evaluating signals who will not have a persistent
impact on the simulation. For example, for multi-
plexers, ESSENT evaluates the way select signal
first, and then evaluates only the selected way.
This skips the effort associated with the unse-
lected way, and ESSENT analyzes the design to
maximize the portion of the design that is safe to
conditionally evaluate. Although this optimization
adds more conditional branch instructions to the
code, it can be quite beneficial in practice. Dove-
tailing on the mulitplexer optimization, ESSENT
skips work that is bound for registers with writes
disabled.

Like full-cycle simulators, the simulators gen-
erated by ESSENT strain the host processor with
their large instruction working sets. Fortunately,
ESSENT’s extensive use of conditional execution
provides an opportunity to shrink the effective
instruction working set through better code lay-
out. ESSENT emits branch hints the compiler
uses to separate cold (infrequently used) code
from hot code. ESSENT automatically instructs
the compiler that the following activities are
unlikely: multiplexer ways associated with reset,
print statements, and triggered assertion handling.

ESSENT accepts hardware designs in FIR-
RTL, an intermediate representation language for
hardware [9]. Compared to classic netlist formats,
FIRRTL retains substantially more semantic in-
formation about the design which can better guide
optimizing transformations. ESSENT generates
C++ code that can be handed off to an optimizing
compiler to produce a fast simulator. ESSENT
effectively serves as yet another backend for
FIRRTL, and it could thus use any language that
produces FIRRTL, such as Chisel, PyRTL [6],
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and Spatial [8]. Additionally, using Yosys, one
can translate most synthesizable Verilog to FIR-
RTL [12].

ESSENT itself is implemented in about three
thousand lines of Scala, and it makes extensive
use of FIRRTL’s supporting library. Verilator is
implemented with about an order of magnitude
more code (C++) than ESSENT and FIRRTL
combined. New open-source infrastructure like
FIRRTL that leverage high-level languages like
Scala make it easy for researchers to pioneer
new concepts. The high-level language not only
provides productivity benefits, but it also eases
achieving correctness.

Evaluation

Methodology

In our evaluation, we compare ESSENT and
Verilator to CommVer, a state-of-the-art in-
dustrial Verilog simulator. CommVer has been
anonymized due to a license agreement, and we
appropriately finesse its options to maximize per-
formance, including using 2-state simulation. To
isolate the benefits of ESSENT’s optimizations,
we also include Baseline which disables most of
ESSENT’s optimizations, and it is effectively a
vanilla full-cycle simulator.

We use open-source processor designs to eval-
uate the simulators. Rocket Chip is a RISC-V
SoC generator written in Chisel [3] that is used in
research and industry [1]. To create more designs,
we use versions from both 2016 (rocketl16) and
2018 (rocketl8). We also use BOOM, an out-
of-order processor generator (boom) [5]. Quali-
tatively, in terms of size the three designs can be
thought of as small, medium, and large. To ani-
mate the processors, we use three software work-
loads: dhrystone (synthetic microbenchmark),
matmul (matrix multiplication), and pchase (syn-
thetic pointer-chasing microbenchmark). We use
an Intel 8-core 3.6 GHz i17-7820X (Skylake)
which has 11 MB of L3 cache and 64 GB of
DRAM to perform our experiments.

Performance

We first compare the simulators on overall
performance, and we report speedups relative to
CommVer since all of the open-source simulators
outperform it (Figure 1). The (unoptimized) Base-
line is comparable in performance to Verilator,
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Figure 1. Speedups relative to CommVer.

which is reasonable since they are both full-
cycle simulators. Verilator significantly outper-
forms CommVer, and raw performance is one
of Verilator’s most compelling features. ESSENT
significantly outperforms the other simulators,
besting Verilator by 1.5-11.5x and CommVer
by 7.2-29.3x. Despite being the newest and
least mature simulator, ESSENT’s performance
advantage demonstrates the promise of novel op-
timizations.

Workload Analysis

We use hardware performance counters to
analyze the interaction between the simulators
and the host processor. In our analysis, we find the
workloads’ common limiting factors and we tease
apart the benefit of ESSENT’s optimizations.

As a starting point, we first consider the num-
ber of instructions executed by the host processor.
We find the open-source simulators derive their
performance advantage over CommVer primarily
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Figure 2. Increase in instructions per cycle (IPC) and
reduction in instructions executed relative to Com-
mVer (higher is better for both axes).

by executing far fewer instructions (Figure 2).
The large reduction in instructions executed high-
lights the importance of the simulation method
used. ESSENT’s novel ability to detect and ex-
ploit inactivity within parts of the design allows it
to avoid a substantial amount of simulation effort.

The open-source simulators also derive a
speedup in part from executing instructions at a
higher rate (Figure 2). For example, ESSENT’s
speedups on rocketl8 are substantially greater
due to a significant boost in instructions per cycle
(IPC). To discern the cause of the IPC improve-
ment, we first seek to understand the workload’s
bottlenecks.

Overall, the simulators we measure are
strongly frontend-bound. They all use some form
of full-cycle simulation, which causes the instruc-
tion working set to grow with the design size.
Within a single simulated cycle, the large number
of instructions fetched outmatches the host plat-
form’s 32 KB L1 instruction cache and often the
combined 1 MB L2 cache (Figure 3). The reduc-
tion in instructions executed by the more efficient
simulators directly reduces the number instruction
cache misses because there is such disparate in-
struction reuse. The reduction in instruction cache
misses is substantial, as it effectively makes the
largest design (boom) for the efficient simulators
(ESSENT & Verilator) comparable in size to the
smallest design (rocket16) for Comm Ver.

In practice, we observe two qualitative
performance regimes of normal performance
(IPC > 1.2) and substantially impaired perfor-
mance (IPC < 0.75). If the processor’s frontend
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Figure 3. Total amount of data transferred per sim-
ulated cycle for instruction cache misses when ex-
ecuting dhrystone. The peak of each bar is for the
L1 instruction cache, while the black line on each bar
denotes the traffic that goes beyond the L2 cache.

is able to handle the workload, normal perfor-
mance is achieved, but if the workload grows
too large and overwhelms the frontend, we see
impaired performance. When the instruction foot-
print grows too large, it not only overflows the
L1 instruction cache and the L2 cache, but it
also overwhelms the frontend’s ability to predict
branches.

A given simulator’s instruction mix only has
a mild sensitivity to the processor design it is
simulating, as the mix is primarily determined by
the simulation approach. The software workload
for the simulated processor has a near negligible
impact on the dynamic instruction mix of the
simulator. Despite the large fraction of memory
operations, we find the L1 data cache is well
suited to handle them (L1 data cache miss rate
typically <10%). As data cache miss rates in-
crease for larger designs, the frontend becomes
more encumbered and continues to be a larger
limiting factor.

We find that for our Skylake core, perfor-
mance is good as long as instructions come pri-
marily from the L1 instruction cache or even the
combined L2 cache. Once there is a significant
number of instruction misses that go beyond the
L2 cache, the IPC drops substantially (Figure 4).
All of the designs studied are suitably large to
cause substantial L1 instruction cache misses, so
whether the instruction working set can remain
in the L2 is commonly the determining factor
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Figure 4. For instructions, frequent L2 misses per kilo
instruction (MPKI) strongly limit IPC.
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Figure 5. Frequent frontend redirections typically
caused by BTB misses can severely hinder perfor-
mance.

for performance (Figure 3). The smallest design
(rocket16) typically fits in the L2, while the
largest design (boom) does not. Depending on
the simulation strategy for rocket18, the simulator
will or will not fit within the L2.

Since instruction fetch is the main bottleneck,
one might be concerned that the frontend is
bandwidth bound when fetching cache lines for
instructions. Due to the Skylake microarchitec-
ture’s increased cache bandwidths, we observe the
bandwidth utilization is below 20% and typically
around 10%. Thus, we conclude the frontend
performance pathologies are more likely caused
by latency penalties more so than bandwidth
limitations for fetching instruction cache misses.

The large instruction footprint also stresses
the core’s branch prediction capabilities, as many
unique branch instructions execute before a sin-
gle branch repeats. Because of the long interval
before branches repeat, branches are often evicted



from the branch target buffer (BTB) before they
can be reused. Thus, the number of times the fron-
tend is redirected due to a branch misprediction
or a BTB miss is the most instructive metric. With
a small design such as rocketl6, the frontend is
able to remember the branch targets and the IPC
is high, however, larger designs overwhelm the
BTB and other predictors, causing performance
to drop substantially (Figure 5).

For rocketl8, ESSENT’s use of branch hints
succeeds in shrinking the instruction footprint
beyond a critical threshold to allow the program
to remain within the L2 cache and the BTB.
The optimization reduces the number of frontend
redirections by 10x and the number of L2 cache
misses by 7x on average. With the branch hints,
the compiler is able to optimize the code layout
to separate cold code from hot code. Conversely,
the success of this optimization can be seen as
an indication of the significant space cold code
takes in the instruction working set [2]. The other
two designs see only a modest benefit from the
branch hints optimization, as rocketl6 is already
well handled by the frontend and boom continues
to be too large for the frontend.

Interestingly, all of the simulators we evaluate
execute a similar fraction of branch instructions.
The existing simulators (CommVer & Verilator)
execute nearly the same fraction of branches (13—
16% & 14-16%). With help from ESSENT’s
multiword arithmetic code which is designed to
be statically unrolled, Baseline executes a slightly
smaller fraction of branch instructions (11-15%).
All of ESSENT’s aggressive optimizations only
slightly increase the fraction of branch instruc-
tions to 11-19%. Despite the variance in tech-
niques, the nearly constant fraction of branch
instructions executed suggests aggressive opti-
mizations in practice may not greatly aggravate
the control-flow challenges for the host processor.
In the worst case, performance may not degrade
much further from frontend bottlenecks, as indi-
cated by the flatlining to the right of Figure 4
& Figure 5. Finally, ESSENT’s ability to deliver
a net speedup demonstrates that novel aggressive
optimizations for RTL simulation are both possi-
ble and worthwhile.

Road Map for Future Research

There are many promising ways to improve
simulation, and in this section we highlight some
potential avenues for future research, especially
in directions enabled by advancements from other
fields.

Considering the most commonly used RTL
simulators are single-threaded, parallelization is
a clear opportunity to improve performance. Al-
though there is substantial prior work on par-
allelizing simulation, we believe a number of
recent developments make it more practical now
than before. First and foremost, the ubiquity of
multicore systems eases development and deploy-
ment. Second, increasing design sizes ease par-
allelization (i.e. weak scaling) since they amor-
tize synchronization overheads. Additionally, the
increased flexibility of SIMD extensions makes
them easier to utilize, and they may be a good
match for replicated portions of the design. Fi-
nally, a multithreaded simulator may benefit from
simultaneous multithreading (SMT), since the
frontend’s latency bottleneck could be overlapped
across threads.

Taking advantage of advancements in pro-
gramming languages and compilers could also
help improve simulation. High-level hardware in-
termediate representations (IR) such as FIRRTL
allow for more intelligent transformations within
simulator generators. The availability of high-
quality open-source compiler infrastructure such
as LLVM could be used in a few ways. First, a
simulator generator could produce the compiler’s
IR rather than C++, removing the need for C++
generation and parsing as an intermediate step
in simulator creation. Secondly, the simulator
generator could take advantage of sophisticated
compiler optimizations such as polyhedral auto-
vectorization to target SIMD extensions on the
host processor. Finally, recent work has shown the
promise of making the simulator generation pro-
cess just-in-time (JIT) instead of ahead-of-time,
which allows for simulation to start immediately
but accelerate over time [10].

Research on memory layouts could also ben-
efit simulation. At a minimum, improved code
layout could ameliorate the frontend bottleneck
with improved instruction locality. These insights
could be deployed via profile-guided optimization
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or even simple heuristics like ESSENT’s fruitful
use of branch hints. Improved data layout could
help by reducing instruction count due to im-
proved spatial locality (smaller load offsets) or
collocating data to exploit bit-level parallelism
with sub-word SIMD.

Improvements to open-source simulation tech-
nology will not only benefit the agile hardware
design community, but it could also help accel-
erate development in related areas. The existence
of a high-quality simulation backend will lower
the barrier to creating new hardware description
languages. Additionally, the simulation infrastruc-
ture’s performance advantages could enable more
ambitious verification methods.

Discussion

Our experiences from this work add further
evidence of the feasibility of open-source RTL
simulators. Not only can they significantly out-
perform industrial tools, their open nature enables
others to contribute. This is especially helpful for
researchers, who can quickly modify an existing
working system to prototype an idea instead of
starting completely from scratch.

This work focuses on software RTL simula-
tion, which is complementary to other simulation
techniques. The low equipment and startup time
costs make software simulation especially attrac-
tive for agile design, but the other techniques
could still prove useful. Transaction level model-
ing is best for early rapid design space exploration
as well as mocking units for testing. Hardware-
accelerated simulation can deliver the highest
performance once the large startup overhead has
been overcome.

Our analysis of ESSENT’s optimizations with
performance counters reveals that conditional ex-
ecution can deliver net speedups. The optimiza-
tions substantially reduce the number of instruc-
tions executed, and the IPC is typically un-
changed. Thus, future researchers should be bold
when considering new simulation optimizations,
even if they may initially appear to increase con-
trol complexity. At a minimum, software simula-
tion will most likely continue to be bottlenecked
by the host processor’s frontend, so optimizations
targeting the processor’s instruction throughput
will likely prove fruitful. Conversely, full-cycle
simulators could serve as a great open-source
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workload for computer architects to optimize
when considering the challenges of large appli-
cation binaries [2].

ESSENT’s use of Scala and FIRRTL'’s library
provides an additional demonstration of the utility
of high-level languages and open-source. More
generally, open-source and high-level languages
are enabling tools to develop the next generation
of fast simulators necessitated by agile design
methodologies. The emergence of agile hardware
design methodologies and the impressive simu-
lation speedups obtained by recent work show
there is both a need and a means to accelerate
simulation.
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